Effects of Organic Modification of Montmorillonite on the Properties of Hydroxypropyl Di-Starch Phosphate Films Prepared by Extrusion Blowing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of OMMTs
2.3. Preparation of HPDSP Nanocomposite Films
2.4. Characterization
2.4.1. Thickness
2.4.2. Mechanical Properties
2.4.3. Water Vapor Permeability (WVP)
2.4.4. X-ray Diffraction (XRD)
2.4.5. Attenuated Total Reflectance-Fourier-Transform Infrared (ATR-FTIR) Analysis
2.4.6. Solid-State Nuclear Magnetic Resonance (NMR)
2.4.7. Statistical Analysis
3. Results and Discussion
3.1. Layer Structures of the Organic Montmorillonites (OMMTs)
3.2. Layer Dispersion of the Various HPDSP Nanocomposite Films
3.3. Thickness of the HPDSP Nanocomposite Films
3.4. Mechanical Properties of the HPDSP Nanocomposite Films
3.5. Water Vapor Permeability (WVP) of the HPDSP Nanocomposite Films
3.6. Intermolecular Interactions that Occur within HPDSP Nanocomposite Films
3.7. Short-Range Molecular Conformation of the HPDSP Nanocomposite Films
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tian, H.; Wang, K.; Liu, D.; Yan, J.; Xiang, A.; Rajulu, A.V. Enhanced mechanical and thermal properties of poly (vinyl alcohol)/corn starch blends by nanoclay intercalation. Int. J. Biol. Macromol. 2017, 101, 314–320. [Google Scholar] [CrossRef] [PubMed]
- Ho, M.P.; Wang, H.; Lee, J.H.; Ho, C.K.; Lau, K.T.; Leng, J.; Hui, D. Critical factors on manufacturing processes of natural fibre composites. Compos. Part B: Eng. 2012, 43, 3549–3562. [Google Scholar] [CrossRef]
- Pinheiro, I.F.; Ferreira, F.V.; Souza, D.H.S.; Gouveia, R.F.; Lona, L.M.F.; Morales, A.R.; Mei, L.H.I. Mechanical, rheological and degradation properties of pbat nanocomposites reinforced by functionalized cellulose nanocrystals. Eur. Polym. J. 2017, 97, 356–365. [Google Scholar] [CrossRef]
- Kaewprachu, P.; Osako, K.; Rungraeng, N.; Rawdkuen, S. Characterization of fish myofibrillar protein film incorporated with catechin-kradon extract. Int. J. Biol. Macromol. 2017, 107, 1463–1473. [Google Scholar] [CrossRef] [PubMed]
- Thunwall, M.; Kuthanova, V.; Boldizar, A.; Rigdahl, M. Film blowing of thermoplastic starch. Carbohydr. Polym. 2008, 71, 583–590. [Google Scholar] [CrossRef]
- Janjarasskul, T.; Krochta, J.M. Edible packaging materials. Annu. Rev. Food Sci. Technol. 2010, 1, 415–448. [Google Scholar] [CrossRef] [PubMed]
- Nguyen Vu, H.P.; Lumdubwong, N. Starch behaviors and mechanical properties of starch blend films with different plasticizers. Carbohydr. Polym. 2016, 154, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Basiak, E.; Lenart, A.; Debeaufort, F. How glycerol and water contents affect the structural and functional properties of starch-based edible films. Polymers 2018, 10, 412. [Google Scholar] [CrossRef]
- Jiang, X.; Zhao, Y.; Hou, L. The effect of glycerol on properties of chitosan/poly (vinyl alcohol) films with AlCl3·6H2O aqueous solution as the solvent for chitosan. Carbohydr. Polym. 2016, 135, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Xu, H.; Zhao, H.; Liu, W.; Zhao, L.; Li, Y. Preparation and characterization of intelligent starch/PVA films for simultaneous colorimetric indication and antimicrobial activity for food packaging applications. Carbohydr. Polym. 2017, 157, 842–849. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Cheng, Y.; Qin, X.; Guo, T.; Deng, J.; Liu, X. Hydrophilic modification of cellulose nanocrystals improves the physicochemical properties of cassava starch-based nanocomposite films. LWT-Food Sci. Technol. 2017, 86, 318–326. [Google Scholar] [CrossRef]
- Kampeerapappun, P.; Aht-ong, D.; Pentrakoon, D.; Srikulkit, K. Preparation of cassava starch/montmorillonite composite film. Carbohydr. Polym. 2007, 67, 155–163. [Google Scholar] [CrossRef]
- Huang, G.; Gao, J.; Wang, X. Preparation and characterization of montmorillonite modified by phosphorus–nitrogen containing quaternary ammonium salts. Appl. Surf. Sci. 2012, 258, 4054–4062. [Google Scholar] [CrossRef]
- Açışlı, Ö.; Karaca, S.; Gürses, A. Investigation of the alkyl chain lengths of surfactants on their adsorption by montmorillonite (Mt) from aqueous solutions. Appl. Clay Sci. 2017, 142, 90–99. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, J.; Gao, Y.; Wang, W.; Dong, H.; Hou, H.; Liu, X. Effect of modification extent of montmorillonite on the performance of starch nanocomposite films. Starch/Staerke 2017, 69. [Google Scholar] [CrossRef]
- Muller, P.; Kapin, E.; Fekete, E. Effects of preparation methods on the structure and mechanical properties of wet conditioned starch/montmorillonite nanocomposite films. Carbohydr. Polym. 2014, 113, 569–576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, X.; Alavi, S.; Herald, T.J. Barrier and mechanical properties of starch-clay nanocomposite films. Cereal Chem. 2008, 85, 124–131. [Google Scholar] [CrossRef]
- Park, H.M.; Li, X.; Jin, C.Z.; Park, C.Y.; Cho, W.J.; Ha, C.S. Preparation and properties of biodegradable thermoplastic starch/clay hybrids. Macromol. Mater. Eng. 2002, 287, 553–558. [Google Scholar] [CrossRef]
- Gao, W.; Dong, H.; Hou, H.; Zhang, H. Effects of clays with various hydrophilicities on properties of starch–clay nanocomposites by film blowing. Carbohydr. Polym. 2012, 88, 321–328. [Google Scholar] [CrossRef]
- Gao, Y.; Dai, Y.; Zhang, H.; Diao, E.; Hou, H.; Dong, H. Effects of organic modification of montmorillonite on the performance of starch-based nanocomposite films. Appl. Clay Sci. 2014, 99, 201–206. [Google Scholar] [CrossRef]
- Yu, R.; Fang, C.; Liu, P.; Liu, X.; Li, Y. Storage stability and rheological properties of asphalt modified with waste packaging polyethylene and organic montmorillonite. Appl. Clay Sci. 2015, 104, 1–7. [Google Scholar] [CrossRef]
- Zhuang, G.; Zhang, Z.; Guo, J.; Liao, L.; Zhao, J. A new ball milling method to produce organo-montmorillonite from anionic and nonionic surfactants. Appl. Clay Sci. 2015, 104, 18–26. [Google Scholar] [CrossRef]
- Liu, S.; Cai, P.; Li, X.; Chen, L.; Li, L.; Li, B. Effect of film multi-scale structure on the water vapor permeability in hydroxypropyl starch (HPS)/Na-MMT nanocomposites. Carbohydr. Polym. 2016, 154, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Ghaneh-Fard, A. Effects of film blowing conditions on molecular orientation and mechanical properties of polyethylene films. J. Plast. Film Sheeting 1999, 15, 194–218. [Google Scholar] [CrossRef]
- Lee, J.H.; Jung, D.; Hong, C.E.; Rhee, K.Y.; Advani, S.G. Properties of polyethylene-layered silicate nanocomposites prepared by melt intercalation with a PP-g-MA compatibilizer. Compos. Sci. Technol. 2005, 65, 1996–2002. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, X.; Han, N.; Bai, S. Effect of citric acid and processing on the performance of thermoplastic starch/montmorillonite nanocomposites. Carbohydr. Polym. 2009, 76, 68–73. [Google Scholar] [CrossRef]
- Müller, C.M.O.; Laurindo, J.B.; Yamashita, F. Effect of nanoclay incorporation method on mechanical and water vapor barrier properties of starch-based films. Ind. Crops Prod. 2011, 33, 605–610. [Google Scholar] [CrossRef]
- Van Soest, J.J.G.; Tournois, H.; Wit, D.D.; Vliegenthart, J.F.G. Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance fourier-transform IR spectroscopy. Carbohydr. Res. 1995, 279, 201–214. [Google Scholar] [CrossRef]
- Véchambre, C.; Buléon, A.; Chaunier, L.; Jamme, F.; Lourdin, D. Macromolecular orientation in glassy starch materials that exhibit shape memory behavior. Macromolecules 2010, 43, 9854–9858. [Google Scholar] [CrossRef]
- Tan, I.; Flanagan, B.M.; Halley, P.J.; Whittaker, A.K.; Gidley, M.J. A method for estimating the nature and relative proportions of amorphous, single, and double-helical components in starch granules by 13C CP/MAS NMR. Biomacromolecules 2007, 8, 885–891. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Fu, X.; Huang, Q.; Zhang, B. Single helix in v-type starch carrier determines the encapsulation capacity of ethylene. Carbohydr. Polym. 2017, 174, 798–803. [Google Scholar] [CrossRef] [PubMed]
- Atichokudomchai, N.; Varavinit, S.; Chinachoti, P. A study of ordered structure in acid-modified tapioca starch by 13C CP/MAS solid-state NMR. Carbohydr. Polym. 2004, 58, 383–389. [Google Scholar] [CrossRef]
- Liu, S.; Li, X.; Chen, L.; Li, L.; Li, B.; Zhu, J. Understanding physicochemical properties changes from multi-scale structures of starch/CNT nanocomposite films. Int. J. Biol. Macromol. 2017, 104, 1330–1337. [Google Scholar] [CrossRef] [PubMed]
Modifier Name (Short Name) | Chemical Structure of the Modifier | OMMTs | CEC (mmol/100 g) | d-Spacing (nm) |
---|---|---|---|---|
Dodecyl trimethyl ammonium chloride(1231) | 1231-MMT | 96.4 | 1.76 | |
Hexadecyl trimethyl ammonium chloride(1631) | 1631-MMT | 89.2 | 2.02 | |
Octadecyl trimethyl ammonium chloride(1831) | 1831-MMT | 87.3 | 2.06 |
Sample | HPDSP-Na | HPDSP-1231 | HPDSP-1631 | HPDSP-1831 |
---|---|---|---|---|
Thickness/mm | 0.452 ± 0.055 a | 0.189 ± 0.003 b | 0.146 ± 0.002 b | 0.189 ± 0.002 b |
Ratio of 1047/1022 | 0.77 | 0.774 | 0.800 | 0.776 |
Sample | C1 | C4 | Total Change/% | ||||||
---|---|---|---|---|---|---|---|---|---|
Center/ppm | Area 1/% | Center/ppm | Area 2/% | Center/ppm | Area 3/% | Center/ppm | Area 4/% | ||
HPDSP-Na | 102.90 | 13.04 | 100.95 | 1.55 | 99.50 | 3.18 | 81.30 | 6.16 | 0.00 |
HPDSP-1231 | 103.02 | 17.19 | 101.38 | 0.54 | 100.00 | 2.80 | 81.34 | 7.86 | 2.13 |
HPDSP-1631 | 102.93 | 13.15 | 100.84 | 1.27 | 100.84 | 1.18 | 81.36 | 11.27 | 6.24 |
HPDSP-1831 | 103.06 | 13.23 | 101.68 | 1.06 | 101.68 | 2.97 | 81.33 | 8.30 | 3.27 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, Y.; Wang, W.; Zhang, H.; Dai, Y.; Hou, H.; Dong, H. Effects of Organic Modification of Montmorillonite on the Properties of Hydroxypropyl Di-Starch Phosphate Films Prepared by Extrusion Blowing. Materials 2018, 11, 1064. https://doi.org/10.3390/ma11071064
Qin Y, Wang W, Zhang H, Dai Y, Hou H, Dong H. Effects of Organic Modification of Montmorillonite on the Properties of Hydroxypropyl Di-Starch Phosphate Films Prepared by Extrusion Blowing. Materials. 2018; 11(7):1064. https://doi.org/10.3390/ma11071064
Chicago/Turabian StyleQin, Yang, Wentao Wang, Hui Zhang, Yangyong Dai, Hanxue Hou, and Haizhou Dong. 2018. "Effects of Organic Modification of Montmorillonite on the Properties of Hydroxypropyl Di-Starch Phosphate Films Prepared by Extrusion Blowing" Materials 11, no. 7: 1064. https://doi.org/10.3390/ma11071064
APA StyleQin, Y., Wang, W., Zhang, H., Dai, Y., Hou, H., & Dong, H. (2018). Effects of Organic Modification of Montmorillonite on the Properties of Hydroxypropyl Di-Starch Phosphate Films Prepared by Extrusion Blowing. Materials, 11(7), 1064. https://doi.org/10.3390/ma11071064