High-Temperature Molecular Beam Epitaxy of Hexagonal Boron Nitride with High Active Nitrogen Fluxes
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kubota, Y.; Watanabe, K.; Tsuda, O.; Taniguchi, T. Deep ultraviolet light–emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 2007, 317, 932–934. [Google Scholar] [CrossRef] [PubMed]
- Britnell, L.; Gorbachev, R.V.; Jalil, R.; Belle, B.D.; Schedin, F.; Mishchenko, A.; Georgiou, T.; Katsnelson, M.I.; Eaves, L.; Morozov, S.V.; et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 2012, 335, 947–950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, W.; Chen, G.; Shi, Z.; Liu, C.C.; Zhang, L.; Xie, G.; Cheng, M.; Wang, D.; Yang, R.; Shi, D.; et al. Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 2013, 12, 792–797. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.X.; Lin, J.Y. Hexagonal boron nitride for deep ultraviolet photonic devices. Semicond. Sci. Technol. 2014, 29, 084003. [Google Scholar] [CrossRef]
- Jiang, H.X.; Lin, J.Y. Hexagonal boron nitride epilayers: Growth, optical properties and device applications. ECS J. Solid State Sci. Technol. 2017, 6, Q3012–Q3021. [Google Scholar] [CrossRef]
- Laleyan, D.A.; Zhao, S.; Woo, S.Y.; Tran, H.N.; Le, H.B.; Szkopek, T.; Guo, H.; Botton, G.A.; Mi, Z. AlN/h-BN heterostructures for Mg dopant-free deep ultraviolet photonics. Nano Lett. 2017, 17, 3738–3743. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Ci, L.; Lu, H.; Sorokin, P.B.; Jin, C.; Ni, J.; Kvashnin, A.G.; Kvashnin, D.G.; Lou, J.; Yakobson, B.I.; et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 2010, 10, 3209–3215. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.K.; Hsu, A.; Jia, X.; Kim, S.M.; Shi, Y.; Hofmann, M.; Nezich, D.; Rodriguez-Nieva, J.F.; Dresselhaus, M.; Palacios, T.; et al. Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. Nano Lett. 2012, 12, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Caneva, S.; Weatherup, R.S.; Bayer, B.C.; Brennan, B.; Spencer, S.J.; Mingard, K.; Cabrero-Vilatela, A.; Baehtz, C.; Pollard, A.J.; Hofmann, S. Nucleation control for large, single crystalline domains of monolayer hexagonal boron nitride via Si-doped Fe catalysts. Nano Lett. 2015, 15, 1867–1875. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Jordan, M.B.; Ayari, T.; Sundaram, S.; El Gmili, Y.; Alam, S.; Alam, M.; Patriarche, G.; Voss, P.L.; Salvestrini, J.P.; et al. Flexible metal-semiconductor-metal device prototype on wafer-scale thick boron nitride layers grown by MOVPE. Sci. Rep. 2017, 7, 786. [Google Scholar] [CrossRef] [PubMed]
- Rigosi, A.F.; Hill, H.M.; Glavin, N.R.; Pookpanratana, S.J.; Yang, Y.F.; Boosalis, A.G.; Hu, J.N.; Rice, A.; Allerman, A.A.; Nguyen, N.V.; et al. Measuring the dielectric and optical response of millimeter-scale amorphous and hexagonal boron nitride films grown on epitaxial graphene. 2D Mater. 2018, 5, 011011. [Google Scholar] [CrossRef] [PubMed]
- Paisley, M.J.; Sitar, Z.; Van, B.; Davis, R.F. Growth of boron nitride films by gas molecular-beam epitaxy. J. Vac. Sci. Technol. B 1990, 8, 323–326. [Google Scholar] [CrossRef]
- Gupta, V.K.; Wamsley, C.C.; Koch, M.W.; Wicks, G.W. Molecular beam epitaxy growth of boron-containing nitrides. J. Vac. Sci. Technol. B 1999, 17, 1246–1248. [Google Scholar] [CrossRef]
- Tsai, C.L.; Kobayashi, Y.; Akasaka, T.; Kasu, M. Molecular beam epitaxial growth of hexagonal boron nitride on Ni(111) substrate. J. Cryst. Growth 2009, 311, 3054–3057. [Google Scholar] [CrossRef]
- Hirama, K.; Taniyasu, Y.; Karimoto, S.; Krockenberger, Y.; Yamamoto, H. Single-crystal cubic boron nitride thin films grown by ion-beam-assisted molecular beam epitaxy. Appl. Phys. Lett. 2014, 104, 092113. [Google Scholar] [CrossRef]
- Xu, Z.; Zheng, R.; Khanaki, A.; Zuo, Z.; Liu, J. Direct growth of graphene on in situ epitaxial hexagonal boron nitride flakes by plasma-assisted molecular beam epitaxy. Appl. Phys. Lett. 2015, 107, 213103. [Google Scholar] [CrossRef]
- Nakhaie, S.; Wofford, J.M.; Schumann, T.; Jahn, U.; Ramsteiner, M.; Hanke, M.; Lopes, J.M.J.; Riechert, H. Synthesis of atomically thin hexagonal boron nitride films on nickel foils by molecular beam epitaxy. Appl. Phys. Lett. 2015, 106, 213108. [Google Scholar] [CrossRef] [Green Version]
- Zuo, Z.; Xu, Z.; Zheng, R.; Khanaki, A.; Zheng, J.-G.; Lui, J. In-situ epitaxial growth of graphene/h-BN van der Waals heterostructures by molecular beam epitaxy. Sci. Rep. 2015, 5, 14760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barton, A.T.; Yue, R.; Anwar, S.; Zhu, H.; Peng, X.; McDonnell, S.; Lu, N.; Addou, R.; Colombo, L.; Kim, M.J.; et al. Transition metal dichalcogenide and hexagonal boron nitride heterostructures grown by molecular beam epitaxy. Microelectron. Eng. 2015, 147, 306–309. [Google Scholar] [CrossRef] [Green Version]
- Tonkikh, A.A.; Voloshina, E.N.; Werner, P.; Blumtritt, H.; Senkovskiy, B.; Güntherodt, G.; Parkin, S.S.P.; Dedkov, Y.S. Structural and electronic properties of epitaxial multilayer h-BN on Ni (111) for spintronics applications. Sci. Rep. 2016, 6, 23547. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Khanaki, A.; Tian, H.; Zheng, R.; Suja, M.; Zheng, J.-G.; Liu, J. Direct growth of hexagonal boron nitride/graphene heterostructures on cobalt foil substrates by plasma-assisted molecular beam epitaxy. Appl. Phys. Lett. 2016, 109, 043110. [Google Scholar] [CrossRef] [Green Version]
- Cho, Y.J.; Summerfield, A.; Davies, A.; Cheng, T.S.; Smith, E.F.; Mellor, C.J.; Khlobystov, A.N.; Foxon, C.T.; Eaves, L.; Beton, P.H.; et al. Hexagonal boron nitride tunnel barriers grown on graphite by high temperature molecular beam epitaxy. Sci. Rep. 2016, 6, 34474. [Google Scholar] [CrossRef] [PubMed]
- Wofford, J.M.; Nakhaie, S.; Krause, T.; Liu, X.; Ramsteiner, M.; Hanke, M.; Riechert, H.; Lopes, J.M.J. A hybrid MBE-based growth method for large-area synthesis of stacked hexagonal boron nitride/graphene heterostructures. Sci. Rep. 2017, 7, 43644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Z.; Tian, H.; Khanaki, A.; Zheng, R.; Suja, M.; Liu, J. Large-area growth of multilayer hexagonal boron nitride on polished cobalt foils by plasma-assisted molecular beam epitaxy. Sci. Rep. 2017, 7, 43100. [Google Scholar] [CrossRef] [PubMed]
- Hirama, K.; Taniyasu, Y.; Karimoto, S.; Yamamoto, H.; Kumakura, K. Heteroepitaxial growth of single-domain cubic boron nitride films by ion-beam-assisted MBE. Appl. Phys. Express 2017, 10, 035501. [Google Scholar] [CrossRef]
- Vuong, T.Q.P.; Cassabois, G.; Valvin, P.; Rousseau, E.; Summerfield, A.; Mellor, C.J.; Cho, Y.; Cheng, T.S.; Albar, J.D.; Eaves, L.; et al. Deep ultraviolet emission in hexagonal boron nitride grown by high-temperature molecular beam epitaxy. 2D Mater. 2017, 4, 021023. [Google Scholar] [CrossRef] [Green Version]
- Khanaki, A.; Xu, Z.; Tian, H.; Zheng, R.; Zuo, Z.; Zheng, J.G.; Liu, J. Self-assembled cubic boron nitride nanodots. Sci. Rep. 2017, 7, 4087. [Google Scholar] [CrossRef] [PubMed]
- Cheng, T.S.; Summerfield, A.; Mellor, C.J.; Davies, A.; Khlobystov, A.N.; Eaves, L.; Foxon, C.T.; Beton, P.H.; Novikov, S.V. High-temperature molecular beam epitaxy of hexagonal boron nitride layers. J. Vac. Sci. Technol. B 2018, 36, 02D103. [Google Scholar] [CrossRef] [Green Version]
- Heilmann, M.; Bashouti, M.; Riechert, H.; Lopes, J.M.J. Defect mediated van der Waals epitaxy of hexagonal boron nitride on graphene. 2D Mater. 2018, 5, 025004. [Google Scholar] [CrossRef] [Green Version]
- Cassabois, G.; Valvin, P.; Gil, B. Intervalley scattering in hexagonal boron nitride. Phys. Rev. B 2016, 93, 035207. [Google Scholar] [CrossRef]
- Du, X.Z.; Li, J.; Lin, J.Y.; Jiang, H.X. The origins of near band-edge transitions in hexagonal boron nitride epilayers. Appl. Phys. Lett. 2016, 108, 052106. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, K.; Taniguchi, T.; Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 2004, 3, 404–409. [Google Scholar] [CrossRef] [PubMed]
- McSkimming, B.M.; Wua, F.; Huault, T.; Chaix, C.; Speck, J.S. Plasma assisted molecular beam epitaxy of GaN with growth rates >2.6 µm/h. J. Cryst. Growth 2014, 386, 168–174. [Google Scholar] [CrossRef]
- McSkimming, B.M.; Chaix, C.; Speck, J.S. High active nitrogen flux growth of GaN by plasma assisted molecular beam epitaxy. J. Vac. Sci. Technol. A 2015, 33, 05E128. [Google Scholar] [CrossRef]
- Novikov, S.V.; Kent, A.J.; Foxon, C.T. Molecular beam epitaxy as a growth technique for achieving free-standing zinc-blende GaN and wurtzite AlxGa1−xN. Prog. Cryst. Growth Charact. Mater. 2017, 63, 25–39. [Google Scholar] [CrossRef]
- Gunning, B.P.; Clinton, E.A.; Merola, J.J.; Doolittle, W.A.; Bresnahan, R.C. Control of ion content and nitrogen species using a mixed chemistry plasma for GaN grown at extremely high growth rates >9 μm/h by plasma-assisted molecular beam epitaxy. J. Appl. Phys. 2015, 118, 155302. [Google Scholar] [CrossRef]
- Cordier, Y.; Damilano, B.; Aing, P.; Chaix, C.; Linez, F.; Tuomisto, F.; Vennegues, P.; Frayssinet, E.; Lefebvre, D.; Portail, M.; et al. GaN films and GaN/AlGaN quantum wells grown by plasma assisted molecular beam epitaxy using a high density radical source. J. Cryst. Growth 2016, 433, 165–171. [Google Scholar] [CrossRef]
- National Institute of Standards and Technology. Atomic Weights and Isotopic Compositions for All Elements. Available online: https://physics.nist.gov/cgi-bin/Compositions/stand_alone.pl (accessed on 29 June 2018).
- Necas, D.; Klapetek, P. Gwyddion: An open-source software for SPM data analysis. Cent. Eur. J. Phys. 2012, 10, 181–188. [Google Scholar]
- Fernández-Garrido, S.; Koblmüller, G.; Calleja, E.; Speck, J.S. In situ GaN decomposition analysis by quadrupole mass spectrometry and reflection high-energy electron diffraction. J. Appl. Phys. 2008, 104, 033541. [Google Scholar] [CrossRef] [Green Version]
- Heying, B.; Averbeck, R.; Chen, L.F.; Haus, E.; Riechert, H.; Speck, J.S. Control of GaN surface morphologies using plasma-assisted molecular beam epitaxy. J. Appl. Phys. 2000, 88, 1855–1860. [Google Scholar] [CrossRef]
- Koblmüller, G.; Wu, F.; Mates, T.; Speck, J.S.; Fernández-Garrido, S.; Calleja, E. High electron mobility GaN grown under N-rich conditions by plasma-assisted molecular beam epitaxy. Appl. Phys. Lett. 2007, 91, 221905. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, T.S.; Summerfield, A.; Mellor, C.J.; Khlobystov, A.N.; Eaves, L.; Foxon, C.T.; Beton, P.H.; Novikov, S.V. High-Temperature Molecular Beam Epitaxy of Hexagonal Boron Nitride with High Active Nitrogen Fluxes. Materials 2018, 11, 1119. https://doi.org/10.3390/ma11071119
Cheng TS, Summerfield A, Mellor CJ, Khlobystov AN, Eaves L, Foxon CT, Beton PH, Novikov SV. High-Temperature Molecular Beam Epitaxy of Hexagonal Boron Nitride with High Active Nitrogen Fluxes. Materials. 2018; 11(7):1119. https://doi.org/10.3390/ma11071119
Chicago/Turabian StyleCheng, Tin S., Alex Summerfield, Christopher J. Mellor, Andrei N. Khlobystov, Laurence Eaves, C. Thomas Foxon, Peter H. Beton, and Sergei V. Novikov. 2018. "High-Temperature Molecular Beam Epitaxy of Hexagonal Boron Nitride with High Active Nitrogen Fluxes" Materials 11, no. 7: 1119. https://doi.org/10.3390/ma11071119
APA StyleCheng, T. S., Summerfield, A., Mellor, C. J., Khlobystov, A. N., Eaves, L., Foxon, C. T., Beton, P. H., & Novikov, S. V. (2018). High-Temperature Molecular Beam Epitaxy of Hexagonal Boron Nitride with High Active Nitrogen Fluxes. Materials, 11(7), 1119. https://doi.org/10.3390/ma11071119