Investigations into Ti-15Mo-W Alloys Developed for Medical Applications
Abstract
:1. Introduction
2. Experimental Procedures
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Niinomi, M.; Liu, Y.; Nakai, M.; Liu, H.; Li, H. Biomedical Titanium Alloys with Young’s Moduli Close to that of Cortical Bone. Regen. Biomater. 2016, 3, 173–185. [Google Scholar] [CrossRef] [PubMed]
- Pal, S. Design of Artificial Human Joints & Organs; Springer: Boston, MA, USA, 2014; pp. 23–40. [Google Scholar]
- Park, J.B.; Kim, Y.K. Biomaterials; Wong, J.Y., Bronzino, J.D., Eds.; CRC Press: New York, NY, USA, 2007; Volume 1, Chapter 1; p. 12. [Google Scholar]
- Prasad, K.; Bazaka, O.; Chua, M.; Rochford, M.; Fedrick, L.; Spoor, J.; Symes, R.; Tieppo, M.; Collins, C.; Cao, A.; et al. Metallic Biomaterials: Current Challenges and Opportunities. Materials 2017, 10, 884. [Google Scholar] [CrossRef] [PubMed]
- Park, J.B.; Lakes, R.S. Biomaterials: An Introduction; Springer: New York, NY, USA, 2007; pp. 99–137. [Google Scholar]
- DeAngelis, J.; Browner, B.D.; Caputo, A.E.; Mast, J.W.; Mendes, M.W. Skeletal Trauma, 4th ed.; Browner, B., Levine, A., Jupiter, J., Trafton, P., Krettek, C., Eds.; Elsevier-Saunders: Philadelphia, PA, USA, 2009; Volume 1, Chapter 4; p. 91. [Google Scholar]
- Osman, R.B.; Swain, M.V. A Critical Review of Dental Implant Materials with an Emphasis on Titanium versus Zirconia. Materials 2015, 8, 932–958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gill, P.; Musaramthota, V.; Munroe, N.; Datye, A.; Dua, R.; Haider, W.; McGoron, A.; Rokicki, R. Surface Modification of Ni–Ti Alloys for Stent Application after Magnetoelectropolishing. Mater. Sci. Eng. C 2015, 50, 37–44. [Google Scholar] [CrossRef]
- Zberg, B.; Uggowitzer, P.J.; Loeffler, J.F. MgZnCa Glasses without Clinically Observable Hydrogen Evolution for Biodegradable Implants. Nat. Mater. 2009, 8, 887–891. [Google Scholar] [CrossRef] [PubMed]
- Lütjering, G.; Williams, J.C. Titanium; Springer: Berlin, Germany, 2007; pp. 203–258. [Google Scholar]
- Qazi, J.I.; Rack, H.J. Metastable Beta Titanium Alloys for Orthopedic Applications. Adv. Eng. Mater. 2005, 7, 993–998. [Google Scholar] [CrossRef]
- Angelescu, R.M.; Cotruţ, C.; Nocivin, A.; Cojocaru, V.D.; Răducanu, D.; Angelescu, M.L.; Cincă, I. Mechanical, Structural and Corrosion Analysis of a Ti-Nb-Zr-Fe Alloy Designated to Oral Implantology. Univ. Politeh. Buchar. Sci. Bull. Ser. B 2015, 77, 237–243. [Google Scholar]
- Li, Y.; Yang, C.; Zhao, H.; Qu, S.; Li, X.; Li, Y. New Developments of Ti-Based Alloys for Biomedical Applications. Materials 2014, 7, 1709–1800. [Google Scholar] [CrossRef] [Green Version]
- Okulov, I.V.; Bönisch, M.; Okulov, A.V.; Volegov, A.S.; Attar, H.; Ehtemam-Haghighi, S.; Calin, M.; Wang, Z.; Hohenwarter, A.; Kaban, I.; et al. Phase Formation, Microstructure and Deformation Behavior of Heavily Alloyed TiNb- and TiV-Based Titanium Alloys. Mater. Sci. Eng. A 2018, 733, 80–86. [Google Scholar] [CrossRef]
- Blackwood, D.J. Biomaterials: Past Successes and Future Problems. Corros. Rev. 2003, 21, 97–124. [Google Scholar] [CrossRef]
- Attar, H.; Ehtemam-Haghighi, S.; Kent, D.; Dargusch, M.S. Recent Developments and Opportunities in Additive Manufacturing of Titanium-Based Matrix Composites: A Review. Int. J. Mach. Tools Manuf. 2018, 133, 85–102. [Google Scholar] [CrossRef]
- Harloff, T.; Hönle, W.; Holzwarth, U.; Bader, R.; Thomas, P.; Schuh, A. Titanium Allergy or not? “Impurity” of Titanium Implant Materials. Health 2010, 2, 306–310. [Google Scholar] [CrossRef]
- Jaganathan, S.K.; Supriyanto, E.; Murugesan, S.; Balaji, A.; Asokan, M.K. Biomaterials in Cardiovascular Research: Applications and Clinical Implications. Biomed. Res. Int. 2014, 2014, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Manam, N.S.; Harun, W.S.W.; Shri, D.N.A.; Ghani, S.A.C.; Kurniawan, T.; Ismail, M.H.; Ibrahim, M.H.I. Study of Corrosion in Biocompatible Metals for Implants: A Review. J. Alloys Compd. 2017, 701, 698–715. [Google Scholar] [CrossRef]
- US-FDA, U.S. Department of Health and Human Services Home Page. Available online: http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/DeviceApprovalsandClearances/default.html (accessed on 29 August 2018).
- Chellan, P.; Sadler, P.J. The Elements of Life and Medicines. Philos. Trans. A Math. Phys. Eng. Sci. 2015, 373, 1–56. [Google Scholar] [CrossRef] [PubMed]
- Yaghoubi, S.; Schwietert, C.W.; McCue, J.P. Biological Roles of Titanium. Biol. Trace Elem. Res. 2000, 78, 205–217. [Google Scholar] [CrossRef]
- Wang, M.L.; Tuli, R.; Manner, P.A.; Sharkey, P.F.; Hall, D.J.; Tuan, R.S. Direct and Indirect Induction of Apoptosis in Human Mesenchymal Stem Cells in Response to Titanium Particles. J. Orthop. Res. 2003, 21, 697–707. [Google Scholar] [CrossRef]
- Coen, N.; Kadhim, M.A.; Wright, E.G.; Case, C.P.; Mothersill, C.E. Particulate Debris from a Titanium Metal Prosthesis Induces Genomic Instability in Primary Human Fibroblast Cells. Br. J. Cancer 2003, 88, 548–552. [Google Scholar] [CrossRef]
- Kumazawa, R.; Watari, F.; Takashi, N.; Tanimura, Y.; Uo, M.; Totsuka, Y. Effects of Ti Ions and Particles on Neutrophil Function and Morphology. Biomaterials 2002, 23, 3757–3764. [Google Scholar] [CrossRef]
- Buzatu, M.; Ghica, Ş.I.; Vasile, E.; Geantă, V.; Ştefănoiu, R.; Petrescu, M.I.; Iacob, G.; Buţu, M.; Sohaciu, M. On the Design of New β-Phase Titanium Alloys Ti-Mo-W. Univ. Politeh. Buchar. Sci. Bull. Ser. B 2016, 78, 161–172. [Google Scholar]
- Mohamed, A.H.G.; Mervat, I.; Sengo, K. Low Young’s Modulus β-Ti Alloys for Biomedical Applications. Adv. Mater. Res. 2014, 1024, 308–311. [Google Scholar] [CrossRef]
- Mohammed, M.T.; Khan, Z.A.; Siddiquee, A.N. Beta Titanium Alloys: The Lowest Elastic Modulus for Biomedical Applications: A Review. Int. J. Chem. Nuclear Metall. Mater. Eng. 2014, 8, 726–731. [Google Scholar] [CrossRef]
- Kolli, R.P.; Devaraj, A. A Review of Metastable Beta Titanium Alloys. Metals 2018, 8, 506. [Google Scholar] [CrossRef]
- Wadood, A.; Inamura, T.; Yamabe-Mitarai, Y.; Hosoda, H. Comparison of Bond Order, Metal d Orbital Energy Level, Mechanical and Shape Memory Properties of Ti-Cr-Sn and Ti-Ag-Sn Alloys. Mater. Trans. 2013, 54, 566–573. [Google Scholar] [CrossRef]
- Manda, P.; Pathak, A.; Mukhopadhyay, A.; Chakkingal, U.; Singh, A.K. Ti-5Al-5Mo-5V-3Cr and Similar Mo Equivalent Alloys: First Principles Calculations and Experimental Investigations. J. Appl. Res. Technol. 2017, 15, 21–26. [Google Scholar] [CrossRef]
- Niinomi, M. Biologically and Mechanically Biocompatible Titanium Alloys. Mater. Trans. 2008, 49, 2170–2178. [Google Scholar] [CrossRef] [Green Version]
- Niinomi, M. Recent Metallic Materials for Biomedical Applications. Metall. Mater. Trans. A 2002, 33, 477–486. [Google Scholar] [CrossRef]
- Chen, Q.; Thouas, G.A. Metallic Implant Biomaterials. Mater. Sci. Eng. R. 2015, 87, 1–57. [Google Scholar] [CrossRef]
- Buzatu, M.; Ghica, Ş.I.; Petrescu, M.I.; Geantă, V.; Ştefănoiu, R.; Iacob, G.; Buţu, M.; Vasile, E. Obtaining and Characterization of the Ti15Mo5W Alloy for Biomedical Applications. Mater. Plast. 2017, 54, 595–600. [Google Scholar]
Element wt.% | Alloy | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AT1 | AT2 | AT3 | AT4 | AT5 | AT6 | AT7 | AT8 | AT9 | AT10 | AT11 | AT12 | AT13 | AT14 | AT15 | |
Ti | 78.58 | 80.35 | 75.14 | 78.05 | 76.37 | 79.61 | 75.64 | 76.30 | 76.00 | 77.74 | 80.25 | 77.77 | 78.01 | 80.58 | 71.10 |
Mo | 15.67 | 15.55 | 13.78 | 15.90 | 15.41 | 13.28 | 15.15 | 15.02 | 15.82 | 14.97 | 15.51 | 14.22 | 15.11 | 15.54 | 16.07 |
W | 5.75 | 4.10 | 11.08 | 6.05 | 8.22 | 9.45 | 9.21 | 8.68 | 8.18 | 7.29 | 4.24 | 8.01 | 6.88 | 3.88 | 12.20 |
Mechanical Test | Alloy | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AT1 | AT2 | AT3 | AT4 | AT5 | AT6 | AT7 | AT8 | AT9 | AT10 | AT11 | AT12 | AT13 | AT14 | AT15 | |
Rc [MPa] | 801 | 717 | 815 | 901 | 808 | 916 | 801 | 921 | 791 | 908 | 782 | 821 | 912 | 798 | 798 |
E [GPa] | 44.23 | 42.78 | 33.51 | 43.14 | 45.35 | 35.22 | 32.19 | 36.36 | 31.11 | 23.27 | 22.48 | 17.86 | 19.55 | 43.05 | 43.32 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buzatu, M.; Geantă, V.; Ştefănoiu, R.; Buţu, M.; Petrescu, M.-I.; Buzatu, M.; Antoniac, I.; Iacob, G.; Niculescu, F.; Ghica, Ş.-I.; et al. Investigations into Ti-15Mo-W Alloys Developed for Medical Applications. Materials 2019, 12, 147. https://doi.org/10.3390/ma12010147
Buzatu M, Geantă V, Ştefănoiu R, Buţu M, Petrescu M-I, Buzatu M, Antoniac I, Iacob G, Niculescu F, Ghica Ş-I, et al. Investigations into Ti-15Mo-W Alloys Developed for Medical Applications. Materials. 2019; 12(1):147. https://doi.org/10.3390/ma12010147
Chicago/Turabian StyleBuzatu, Mihai, Victor Geantă, Radu Ştefănoiu, Mihai Buţu, Mircea-Ionuţ Petrescu, Mihai Buzatu, Iulian Antoniac, Gheorghe Iacob, Florentina Niculescu, Ştefan-Ioan Ghica, and et al. 2019. "Investigations into Ti-15Mo-W Alloys Developed for Medical Applications" Materials 12, no. 1: 147. https://doi.org/10.3390/ma12010147
APA StyleBuzatu, M., Geantă, V., Ştefănoiu, R., Buţu, M., Petrescu, M. -I., Buzatu, M., Antoniac, I., Iacob, G., Niculescu, F., Ghica, Ş. -I., & Moldovan, H. (2019). Investigations into Ti-15Mo-W Alloys Developed for Medical Applications. Materials, 12(1), 147. https://doi.org/10.3390/ma12010147