Laboratory and Numerical Investigation of Microwave Heating Properties of Asphalt Mixture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Mix Design
2.2. Thermal Properties Measurement
2.3. Electromagnetic Properties Measurement
2.4. Temperature Measurement under Microwave Heating
3. Numerical Simulation
3.1. Electromagnetic Waves
3.2. Heat Transfer
3.3. Multiphysics Coupling
3.4. Model Definition
3.5. Material Properties
4. Results and Discussions
4.1. Numerical Simulation Results
4.1.1. Microwave Heat Source Distribution
4.1.2. Temperature Distribution of Test Samples
4.2. Comparison between Laboratory and Simulation Results
5. Conclusions
- (1)
- The partial replacement of basalt aggregates with steel slag aggregates improve the electromagnetic properties of asphalt mixture. Microwave heating of asphalt mixture sample containing steel slag includes both resistive heating and magnetic heating due to the altered permeability of the sample.
- (2)
- Asphalt mixture sample containing steel slag aggregates has a higher microwave heating efficiency than ordinary asphalt mixture sample with basalt aggregates.
- (3)
- There is a good correlation between laboratory measured temperatures and numerically simulated temperatures of asphalt mixture samples.
- (4)
- It is feasible to use the developed FEM model, which coupled electromagnetic waves with heat transfer, to simulate the microwave heating process of asphalt mixture.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jones, D.A.; Lelyveld, T.P.; Mavrofidis, S.D.; Kingman, S.W.; Miles, N.J. Microwave heating applications in environmental engineering—A review. Resour. Conserv. Recycl. 2002, 34, 75–90. [Google Scholar] [CrossRef]
- Metaxas, A.A.; Meredith, R.J. Industrial Microwave Heating; IET: Stevenage, UK, 1983. [Google Scholar]
- Benedetto, A.; Calvi, A. A pilot study on microwave heating for production and recycling of road pavement materials. Constr. Build. Mater. 2013, 44, 351–359. [Google Scholar] [CrossRef]
- Bosisio, R.; Spooner, J.; Granger, J. Asphalt road maintenance with a mobile microwave power unit. J. Microw. Power 1974, 9, 381–386. [Google Scholar] [CrossRef]
- Gallego, J.; del Val, M.A.; Contreras, V.; Paez, A. Heating asphalt mixtures with microwaves to promote self-healing. Constr. Build. Mater. 2013, 42, 1–4. [Google Scholar] [CrossRef]
- Sun, T.; Chen, L. Dielectric loss model for asphalt mixture based on microwave heating. Electromagnetics 2017, 37, 49–63. [Google Scholar] [CrossRef]
- Wang, Z.J.; Gao, J.; Ai, T.; Zhao, P. Laboratory investigation on microwave deicing function of micro surfacing asphalt mixtures reinforced by carbon fiber. J. Test. Eval. 2014, 42, 498–507. [Google Scholar] [CrossRef]
- Sun, Y.; Wu, S.; Liu, Q.; Hu, J.; Yuan, Y.; Ye, Q. Snow and ice melting properties of self-healing asphalt mixtures with induction heating and microwave heating. Appl. Therm. Eng. 2018, 129, 871–883. [Google Scholar] [CrossRef]
- Wang, H.; Yang, J.; Liao, H.; Chen, X. Electrical and mechanical properties of asphalt concrete containing conductive fibers and fillers. Constr. Build. Mater. 2016, 122, 184–190. [Google Scholar] [CrossRef]
- Liu, W.; Miao, P.; Wang, S.-Y. Increasing microwave heating efficiency of asphalt-coated aggregates mixed with modified steel slag particles. J. Mater. Civ. Eng. 2017, 29, 04017171. [Google Scholar] [CrossRef]
- Apostolidis, P.; Liu, X.; Scarpas, A.; Kasbergen, C.; van de Ven, M.F.C. Advanced evaluation of asphalt mortar for induction healing purposes. Constr. Build. Mater. 2016, 126, 9–25. [Google Scholar] [CrossRef]
- Liu, Q.; Wu, S.; Schlangen, E. Induction heating of asphalt mastic for crack control. Constr. Build. Mater. 2013, 41, 345–351. [Google Scholar] [CrossRef]
- Miao, P.; Liu, W.; Wang, S. Improving microwave absorption efficiency of asphalt mixture by enriching Fe3O4 on the surface of steel slag particles. Mater. Struct. 2017, 50, 134. [Google Scholar] [CrossRef]
- Al-Ohaly, A.A.; Terrel, R.L. Effect of Microwave Heating on Adhesion and Moisture Damage of Asphalt Mixtures; National Research Council, Transportation Research Board: Washington, DC, USA, 1988; pp. 27–36. [Google Scholar]
- Jaselskis, E.J.; Grigas, J.; Brilingas, A. Dielectric properties of asphalt pavement. J. Mater. Civ. Eng. 2003, 15, 427–434. [Google Scholar] [CrossRef]
- Hopstock, M.D.; Zanko, M.L. Minnesota Taconite as a Microwave-Absorbing Road Aggregate Material for Deicing and Pothole Patching Applications; Natural Resources Research Institute, University of Minnesota Duluth: Duluth, MN, USA, 2005. [Google Scholar]
- Zhao, H.D.; Zhong, S.; Zhu, X.Y.; Chen, H.Q. High-efficiency heating characteristics of ferrite-filled asphalt-based composites under microwave irradiation. J. Mater. Civ. Eng. 2017, 29, 04017007. [Google Scholar] [CrossRef]
- Wang, H.; Yang, J.; Lu, G.; Liu, X. Accelerated healing in asphalt concrete via laboratory microwave heating. J. Test. Eval. 2018, 48. [Google Scholar] [CrossRef]
- Wang, H.; Apostolidis, P.; Liu, X.; Scarpas, T.; Yang, J.; Xu, L. Laboratory test and numerical simulation of microwave heating properties of asphalt mixture. In Proceedings of the 10th International Conference on the Bearing Capacity of Roads, Railways and Airfields (BCRRA 2017), Athens, Greece, 28–30 June 2017. [Google Scholar]
- Liu, Q.T.; Li, B.; Schlangen, E.; Sun, Y.H.; Wu, S.P. Research on the mechanical, thermal, induction heating and healing properties of steel slag/steel fibers composite asphalt mixture. Appl. Sci. 2017, 7, 1088. [Google Scholar] [CrossRef]
- Wu, S.P.; Xue, Y.J.; Ye, Q.S.; Chen, Y.C. Utilization of steel slag as aggregates for stone mastic asphalt (SMA) mixtures. Build. Environ. 2007, 42, 2580–2585. [Google Scholar] [CrossRef]
- ASTM. ASTM D6927-15 Standard Test Method for Marshall Stability and Flow of Asphalt Mixtures; ASTM International: West Conshohocken, PA, USA, 2015. [Google Scholar]
- Nguyen, Q.T.; Di Benedetto, H.; Sauzeat, C. Determination of thermal properties of asphalt mixtures as another output from cyclic tension-compression test. Road Mater. Pavement Des. 2012, 13, 85–103. [Google Scholar] [CrossRef]
- Wang, H. Design and Evaluation of Conductive Asphalt Concrete for Self-Healing. Master’s Thesis, Southeast University, Nanjing, China, 2016. [Google Scholar]
- Liu, W.; Wang, S.; Gu, X. Improving microwave heating efficiency of asphalt concrete by increasing surface magnetic loss of aggregates. Road Mater. Pavement Des. 2018, 1–15. [Google Scholar] [CrossRef]
- Wu, S.; Mo, L.; Shui, Z.; Chen, Z. Investigation of the conductivity of asphalt concrete containing conductive fillers. Carbon 2005, 43, 1358–1363. [Google Scholar] [CrossRef]
- Pitchai, K. Electromagnetic and Heat Transfer Modeling of Microwave Heating in Domestic Ovens; University of Nebraska at Lincoln: Lincoln, NE, USA, 2011. [Google Scholar]
- Kopyt, P.; Celuch, M. Coupled electromagnetic-thermodynamic simulations of microwave heating problems using the fdtd algorithm. J. Microw. Power Electromagn. Energy 2007, 41, 18–29. [Google Scholar] [CrossRef]
- Ahmedzade, P.; Sengoz, B. Evaluation of steel slag coarse aggregate in hot mix asphalt concrete. J. Hazard. Mater. 2009, 165, 300–305. [Google Scholar] [CrossRef]
- Sun, Y.; Wu, S.; Liu, Q.; Zeng, W.; Chen, Z.; Ye, Q.; Pan, P. Self-healing performance of asphalt mixtures through heating fibers or aggregate. Constr. Build. Mater. 2017, 150, 673–680. [Google Scholar] [CrossRef]
Properties | Value |
---|---|
Penetration (25 °C, 100 g, 5 s, 0.1 mm) | 71 |
Ductility (5 cm/min, 5 °C, cm) | 32.2 |
Softening point (R&B, °C) | 47.5 |
Flash point (°C) | 272 |
Rotational viscosity (60 °C, Pa·s) | 203 |
Wax content (%) | 1.6 |
Density (15 °C, g/cm3) | 1.032 |
Aggregate | Specific Gravity (g/cm3) | Water Absorption (%) | Crushing Value (%) | Asphalt Affinity (%) | Abrasion Loss (%) (Los Angeles) |
---|---|---|---|---|---|
Basalt | 2.82 | 0.72 | 12.8 | >85 | 14.6 |
Steel slag | 3.47 | 1.26 | 12.2 | >95 | 13.8 |
Mixture Type | Density (kg/m3) | Thermal Conductivity (W/(m·K)) | Specific Heat Capacity (J/(kg·K)) | Thermal Diffusivity (m2/s) |
---|---|---|---|---|
SMA-B | 2530 | 1.508 | 918.5 | 6.49 × 10−7 |
SMA-S | 2632 | 1.446 | 756.5 | 7.26 × 10−7 |
Mixture Type | |||||
---|---|---|---|---|---|
SMA-B | 4.26 × 10−9 | 5.34 | 0.49 | 1.0 | 0 |
SMA-S | 3.85 × 10−7 | 5.68 | 0.52 | 1.03 | 0.006 |
Mixture Type | Resistive Losses (W) | Magnetic Losses (W) | Total Heat Source (W) |
---|---|---|---|
SMA-B | 455.19 | 0 | 455.19 |
SMA-S | 442.06 | 28.37 | 470.43 |
Mixture Type | Initial Temperature (°C) | Final Temperature (°C) | Heating Rate (°C/s) | |
---|---|---|---|---|
SMA-B | Experiment | 19.7 | 73.4 | 0.448 |
Simulation | 20.0 | 86.1 | 0.551 | |
SMA-S | Experiment | 20.3 | 95.6 | 0.623 |
Simulation | 20.0 | 106.5 | 0.721 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Zhang, Y.; Zhang, Y.; Feng, S.; Lu, G.; Cao, L. Laboratory and Numerical Investigation of Microwave Heating Properties of Asphalt Mixture. Materials 2019, 12, 146. https://doi.org/10.3390/ma12010146
Wang H, Zhang Y, Zhang Y, Feng S, Lu G, Cao L. Laboratory and Numerical Investigation of Microwave Heating Properties of Asphalt Mixture. Materials. 2019; 12(1):146. https://doi.org/10.3390/ma12010146
Chicago/Turabian StyleWang, Haopeng, Yue Zhang, Yi Zhang, Shuyin Feng, Guoyang Lu, and Lintao Cao. 2019. "Laboratory and Numerical Investigation of Microwave Heating Properties of Asphalt Mixture" Materials 12, no. 1: 146. https://doi.org/10.3390/ma12010146
APA StyleWang, H., Zhang, Y., Zhang, Y., Feng, S., Lu, G., & Cao, L. (2019). Laboratory and Numerical Investigation of Microwave Heating Properties of Asphalt Mixture. Materials, 12(1), 146. https://doi.org/10.3390/ma12010146