Characterization of Asphalt Mixture Moduli under Different Stress States
Abstract
:1. Introduction
2. Sample Preparation
2.1. Materials
2.2. Specimen Manufacturing
3. Moduli Tests
3.1. Experiment Conditions and Procedures
3.2. Calculation Formula
4. Test Results and Analysis
4.1. Contrastive Analysis of Modulus Test Results
4.2. Standardization Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gao, Y.; Geng, D.; Huang, X.; Li, G. Degradation evaluation index of asphalt pavement based on mechanical performance of asphalt mixture. Constr. Build. Mater. 2017, 140, 75–81. [Google Scholar] [CrossRef]
- Karami, M.; Nikraz, H.; Sebayang, S.; Irianti, L. Laboratory experiment on resilient modulus of BRA modified asphalt mixtures. Int. J. Pavement Res. Technol. 2018, 11, 38–46. [Google Scholar] [CrossRef]
- Zoorob, S.E.; Suparma, L.B. Laboratory design and investigation of the properties of continuously graded Asphaltic concrete containing recycled plastics aggregate replacement (Plastiphalt). Cem. Concr. Compos. 2000, 22, 233–242. [Google Scholar] [CrossRef]
- Loulizi, A.; Flintsch, G.; Al-Qadi, I.; Mokarem, D. Comparing resilient modulus and dynamic modulus of hot-mix asphalt as material properties for flexible pavement design. Trans. Res. Rec. 2006, 1970, 161–170. [Google Scholar] [CrossRef]
- Shu, W.G.; You, Z.; Williams, R.C.; Li, X. Preliminary dynamic modulus criteria of HMA for Field rutting of asphalt pavements: Michigan’s experience. J. Trans. Eng. 2011, 137, 37–45. [Google Scholar]
- Lv, S.; Wang, S.; Liu, C.; Zheng, J.; Li, Y.; Peng, X. Synchronous testing method for tension and compression moduli of asphalt mixture under dynamic and static loading states. J. Mater. Civ. Eng. 2018, 30, 04018268. [Google Scholar] [CrossRef]
- Lv, S.; Liu, C.; Chen, D.; Zheng, J.; You, Z.; You, L. Normalization of fatigue characteristics for asphalt mixtures under different stress states. Constr. Build. Mater 2018, 177, 33–42. [Google Scholar] [CrossRef]
- Roberts, F.L.; Kandhal, P.S.; Brown, E.R.; Lee, D.Y.; Kennedy, T.W. Hot Mix Asphalt Materials, Mixture Design, and Construction, 2nd ed.; National Asphalt Pavement Association Education Foundation: Lanham, MD, USA, 1996. [Google Scholar]
- Vega-Zamanillo, Á.; Calzada-Pérez, M.A.; Sánchez-Alonso, E.; Gonzalo-Orden, H. Density, adhesion and stiffness of warm mix asphalts. Procedia Soc. Behav. Sci. 2014, 160, 323–331. [Google Scholar] [CrossRef]
- Woszuk, A.; Franus, W. Properties of the warm mix asphalt involving clinoptilolite and Na-P1 zeolite additives. Constr. Build. Mater. 2016, 114, 556–563. [Google Scholar] [CrossRef]
- Woszukm, A.; Franus, W. A review of the application of zeolite materials in warm mix asphalt technologies. Appl. Sci. 2017, 7, 293. [Google Scholar] [CrossRef]
- Yao, H.; Dai, Q.; You, Z.; Bick, A.; Wang, M. Modulus simulation of asphalt binder models using Molecular Dynamics (MD) method. Constr. Build. Mater. 2018, 162, 430–441. [Google Scholar]
- Lv, S.; Liu, C.; Yao, H.; Zheng, J. Comparisons of synchronous measurement methods on various moduli of asphalt mixtures. Constr. Build. Mater 2018, 158, 1035–1045. [Google Scholar] [CrossRef]
- M.o.T.o.t.P.s.R.o (Ministry of Transport of the People’s Republic of China). Specifications and Test Methods of Bitumen and Biminous Mixtures for Highway Engineering; (JTG E20-2011); Renmin Communication Press: Beijing, China, 2011. [Google Scholar]
- M.o.T.o.t.P.s.R.o (Ministry of Transport of the People’s Republic of China). Specifications for Design of Highway Asphalt Pavement; (JTG D50-2017); Renmin Communication Press: Beijing, China, 2017. [Google Scholar]
- Xing, C.; Tan, Y.; Liu, X.; Anupam, K.; Scarpas, T. Research on local deformation property of asphalt mixture using digital image correlation. Constr. Build. Mater. 2017, 140, 416–423. [Google Scholar] [CrossRef]
- Specht, L.P.; Babadopulos, L.F.d.A.L.; Di Benedetto, H.; Sauzéat, C.; Soares, J.B. Application of the theory of viscoelasticity to evaluate the resilient modulus test in asphalt mixes. Constr. Build. Mater 2017, 149, 648–658. [Google Scholar] [CrossRef]
- Lv, S.; Luo, Z.; Xie, J. Fatigue performance of aging asphalt mixtures. Polimery 2015, 60, 126–131. [Google Scholar] [CrossRef]
- Jain, S.; Shukla, S.; Wadhvani, R. Dynamic selection of normalization techniques using data complexity measures. Expert Syst. Appl. 2018, 106. [Google Scholar] [CrossRef]
- Datta, S.N. Min-max and max-min principles for the solution of 2 + 1 Dirac fermion in magnetic field, graphene lattice and layered diatomic materials. Chem. Phys. Lett. 2018, 692, 313–318. [Google Scholar] [CrossRef]
- Shao, G.; Sang, N. Regularized max-min linear discriminant analysis. Pattern Recognit. 2017, 66. [Google Scholar] [CrossRef]
- Virgil Ping, W.; Xiao, Y. Empirical correlation of indirect tension resilient modulus and complex modulus test results for asphalt concrete mixtures. Road Mater. Pav. Des. 2008, 9, 177–200. [Google Scholar] [CrossRef]
- Lv, S.; Wang, X.; Liu, C.; Wang, S. Fatigue damage characteristics considering the difference of tensile-compression modulus for asphalt mixture. J. Test. Eval. 2018, 46, 20170114. [Google Scholar] [CrossRef]
Technical Indexes | Value | Specification |
---|---|---|
Penetration 25 °C, 100 g, 5 s (0.1 mm) | 55.91 | 30–60 |
Ductility 5 cm/min, 5 °C (cm) | 34.22 | ≥20 |
Softening point TR&B (°C) | 79.39 | ≥60 |
Items | Crushing Value | Content of Needle-Like Particles | Content of SiO2 | Apparent Density |
---|---|---|---|---|
Value | 10.8 | 7.8 | 1.79 | 2.578 |
Specification | ≤26 | ≤20 | - | - |
Asphalt Aggregate Ratio (%) | Bulk Specific Gravity (g·cm−3) | Volume of Air Voids VV (%) | Voids Filled with Asphalt VFA (%) | Voids in Mineral Aggregate VMA (%) | Marshall Stability (kN) | Flow Value (0.1 mm) |
---|---|---|---|---|---|---|
5.2 | 2.54 | 4.51 | 67.20 | 16.11 | 12.71 | 27.89 |
Loading Frequency (Hz) | 0.1 | 1 | 10 | 20 | 50 |
---|---|---|---|---|---|
Cycles | 20 | 50 | 150 | 200 | 300 |
Dynamic Modulus | a | b | Correlation Coefficient |
---|---|---|---|
Direct tensile | 2062.2475 | 0.2811 | 0.85 |
Unconfined compressive | 2745.2190 | 0.2711 | 0.84 |
Flexural tensile | 1529.8759 | 0.3122 | 0.80 |
Indirect tensile | 2287.3226 | 0.2787 | 0.85 |
Modulus Ratio | a | b | Correlation Coefficient |
---|---|---|---|
Compressive dynamic modulus | 0.9905 | 0.2888 | 0.93 |
Tensile dynamic modulus | 1.0076 | 0.2717 | 0.95 |
Dynamic modulus | 0.9947 | 0.2599 | 0.91 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, X.; Lv, S.; Zhang, N.; Xia, C.; Li, Y. Characterization of Asphalt Mixture Moduli under Different Stress States. Materials 2019, 12, 397. https://doi.org/10.3390/ma12030397
Fan X, Lv S, Zhang N, Xia C, Li Y. Characterization of Asphalt Mixture Moduli under Different Stress States. Materials. 2019; 12(3):397. https://doi.org/10.3390/ma12030397
Chicago/Turabian StyleFan, Xiyan, Songtao Lv, Naitian Zhang, Chengdong Xia, and Yipeng Li. 2019. "Characterization of Asphalt Mixture Moduli under Different Stress States" Materials 12, no. 3: 397. https://doi.org/10.3390/ma12030397
APA StyleFan, X., Lv, S., Zhang, N., Xia, C., & Li, Y. (2019). Characterization of Asphalt Mixture Moduli under Different Stress States. Materials, 12(3), 397. https://doi.org/10.3390/ma12030397