Laser Cutting: A Review on the Influence of Assist Gas
Abstract
:1. Introduction
- Study of the gas jets emerging from converging nozzles.
- Study of the interactions of the gas jet emerging from converging nozzles with the surface of the workpiece.
- Study of the interactions of the gas jet with the cut kerf.
- Study of the interactions of the gas jet with the molten material into the cut kerf.
- Study of different nozzles or solutions to solve problems found in the interactions of the gas jet during laser cutting.
2. Removal Mechanisms of Molten Material
3. Aerodynamic Interactions during Laser Cutting
3.1. Free Jets from Converging Nozzles
3.2. Gas Jet Impingement. Choking
3.3. Gas Flow Pattern into the Kerf
3.4. Interactions of the Assist Gas with the Molten Material
4. Proposals to Avoid Unsuitable Aerodynamic Interactions
4.1. Supersonic Nozzles
4.2. High Pressure Gas Laser Cutting with Nonreactive Gases
4.3. Off-Axis Nozzles
4.4. Annular (Ring) Nozzles
4.5. Off-Axis Supersonic Rectangular Nozzles
5. Conclusions and Future Prospects
- Most of the research carried out in the past neglects the presence of a hot viscous film of molten material on the cut kerf. The understanding of the interaction between the assist gas and the molten material is vital because its interaction is the main issue in the removal of the melt. The unique technical challenges present in the process require CFD simulations or novel experimental methods.
- Novel nozzle designs or even new arrangements to extract the molten material from the cut kerf in a most efficient way are required. This task should be economically viable because the conventional nozzles are easily manufactured and cheap in comparison with the rest of elements used in a laser cutting unit. These designs should be based on the previous point to correctly address the task of the nozzles.
- Nozzles are currently manufactured in mass. In the literature, no serious studies on the most appropriated materials and machining techniques for these parts are found. Furthermore, the influence of the finishing on the nozzle performance during laser fusion cutting has not been addressed.
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
a | Adimensional function |
A0 | Cross section area at the inlet |
A1 | Cross section area at the outlet |
Ac | Cross section area at the throat |
b | Adimensional function |
Cf | Local skin friction coefficient |
d, D | Nozzle exit diameter |
f | Friction coefficient; focal length |
F0 | Force exerted by the gas on the cutting front due to static pressure |
Fn | Normal component of the dynamic force exerted by the gas on the cutting front |
Ft | Tangential component of the dynamic force exerted by the gas on the cutting front |
M | Mach number |
M0 | Mach number at the inlet |
M1 | Mach number at the outlet |
Mc | Mach number at the throat |
p | Pressure of the assist gas |
p0 | Reference pressure; stagnation pressure |
pa | Ambient pressure |
pb | Background pressure |
pe | Pressure just at the exit of the nozzle |
pg | Reduced pressure |
P | Laser power |
Ra | Average roughness |
Reg | Reynolds number of the assist gas |
tm | Melt film thickness |
T | Temperature |
Ug | Velocity of the assist gas |
Um | Velocity of the molten material |
vc | Cutting speed |
Vc | Velocity of the assist gas at the throat of the de Laval nozzle |
w | Kerf width |
x | Distance along the centerline of the jet; distance along the cutting front or cutting edge |
xM | Position of the Mach disk with regard to the nozzle exit |
Z | Stand-off |
γ | Heat capacity ratio (γ = cp/cv) |
ρc | Density of the assist gas at the throat of the de Laval nozzle |
ρg | Density of the assist gas |
ρm | Density of the molten material |
σm | Surface tension of the molten material |
τ | Shear stress acting on the cutting front due to the assist gas |
φ | Inclination of the cutting front |
µg | Dynamic viscosity of the assist gas |
References
- Hilton, P.A. Early days of laser cutting. In Proceedings of the Lasers in Material Processing, Munich, Germany, 18 August 1997; pp. 10–16. [Google Scholar]
- Eurostat. Energy Balance Sheets 2016 Data, 2018 ed.; Eurostat: Luxembourg, 2018. [Google Scholar]
- Gutowski, T.; Dahmus, J.; Thiriez, A. Electrical energy requirements for manufacturing processes. In Proceedings of the 13th International of Life Cycle Engineering, Leuven, Belgium, 31 May–2 June 2006; pp. 623–627. [Google Scholar]
- Steen, W. Laser Material Processing, 3rd ed.; Springer: London, UK, 2003. [Google Scholar]
- Powell, J. CO2 Laser Cutting; Springer: London, UK, 1993. [Google Scholar]
- Sichani, E.F.; Kohl, S.; Duflou, J.R. Plasma detection and control requirements for CO2 laser cutting. CIRP Ann. 2013, 62, 215–218. [Google Scholar] [CrossRef]
- O’Neill, W.; Sparkes, M.; Varnham, M.; Horley, R.; Birch, M.; Woods, A.; Harker, A. High power high brightness industrial fibre laser technology. In Proceedings of the 23rd International Congress on Laser Materials Processing and Laser Microfabrication, San Francisco, CA, USA, 4–7 October 2004; p. 301. [Google Scholar]
- Hirano, K.; Fabbro, R. Possible explanations for different surface quality in laser cutting with 1 and 10 μm beams. J. Laser Appl. 2012, 24, 012006. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, A.F.H. Theoretical Analysis of Laser Beam Cutting; Shaker Verlag GmbH: Aachen, Germany, 2002. [Google Scholar]
- Olsen, F.O. An evaluation of the cutting potential of different types of high power lasers. In Proceedings of the 25th International Congress on Laser Materials Processing and Laser Microfabrication, Scottsdale, AZ, USA, 30 October–2 November 2006; pp. 188–196. [Google Scholar]
- Olsen, F.O.; Alting, L. Cutting front formation in laser cutting. CIRP Ann. 1989, 38, 215–218. [Google Scholar] [CrossRef]
- Molian, P.A. Dual-beam CO2 laser cutting of thick metallic materials. J. Mater. Sci. 1993, 28, 1738–1748. [Google Scholar] [CrossRef]
- Vicanek, M.; Simon, G. Momentum and heat transfer of an inert gas jet to the melt in laser cutting. J. Phys. D Appl. Phys. 1987, 20, 1191–1196. [Google Scholar] [CrossRef]
- Rao, B.T.; Nath, A.K. Melt flow characteristics in gas-assisted laser cutting. Sadhana 2002, 27, 569–575. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Lu, L.; Li, L.; Zhao, H. Nozzle design and assistant-gas flow analysis in the CO2 laser cutting. In Knowledge Enterprise: Intelligent Strategies in Product Design, Manufacturing, and Management, Proceedings of PROLAMAT 2006, IFIP TC5 International Conference, Shanghai, China, 15–17 June 2006; Wang, K., Kovacs, G.L., Wozny, M., Fang, M., Eds.; Springer: Boston, MA, USA, 2006; pp. 519–524. [Google Scholar]
- Yilbas, B.S.; Kar, A. Thermal and efficiency analysis of the CO2 laser cutting process. Opt. Laser. Eng. 1998, 30, 93–106. [Google Scholar] [CrossRef]
- Mas, C.; Fabbro, R.; Gouédard, Y. Steady-state laser cutting modeling. J. Laser Appl. 2003, 15, 145–152. [Google Scholar] [CrossRef]
- Kaplan, A.F.H. An analytical model of metal cutting with a laser beam. J. Appl. Phys. 1996, 79, 2198–2208. [Google Scholar] [CrossRef]
- Chen, S.L. The effects of high-pressure assistant-gas flow on high-power CO2 laser cutting. J. Mater. Process. Technol. 1999, 88, 57–66. [Google Scholar] [CrossRef]
- Forbes, N. The role of the gas nozzle in metal-cutting with CO2 lasers. In Proceedings of the Laser 75 Opto-Electronics, Munich, Germany, 24–27 June 1975; pp. 93–95. [Google Scholar]
- Kamalu, J.N.; Steen, W.M. The importance of gas flow parameters in laser cutting. Metall. Soc. AIME 1981, A81, 1. [Google Scholar]
- Fieret, J.; Terry, M.J.; Ward, B.A. Aerodynamic interactions during laser cutting. In Laser Processing: Fundamentals, Applications, and Systems Engineering, Proceedings of the Laser Processing: Fundamentals, Applications, and Systems Engineering, Quebec City, QC, Canada, 3–6 June 1986; Duley, W.W., Weeks, R.W., Eds.; SPIE: Bellingham, WA, USA, 1986; pp. 53–62. [Google Scholar]
- Man, H.C.; Duan, J.; Yue, T.M. Dynamic characteristics of gas jets from subsonic and supersonic nozzles for high pressure gas laser cutting. Opt. Laser Technol. 1998, 30, 497–509. [Google Scholar] [CrossRef]
- Courant, R.; Friedrichs, K.O. Supersonic Flow and Shock Waves; Interscience: New York, NY, USA, 1948. [Google Scholar]
- Leidinger, D.; Penz, A.; Schuöcker, D.; Deinzer, G.; Geiger, M.; Hansel, A.; Herbig, N. Nozzle design and simulation of gas flow for the laser cutting process. In Proceedings of the Laser Materials Processing: Industrial and Microelectronics Applications, Vienna, Austria, 3–8 April 1994; pp. 469–479. [Google Scholar]
- Miller, D.R. Free Jet Sources. In Atomic and Molecular Beam Methods; Scoles, G., Ed.; Oxford University Press: New York, NY, USA, 1988; pp. 14–53. [Google Scholar]
- Ward, B.A. Supersonic characteristics of nozzles used with lasers for cutting. In Proceedings of the Inspection, Measurement & Control and Laser Diagnostics & Photochemistry Conferences, Boston, MA, USA, 12–15 November 1984; pp. 12–15. [Google Scholar]
- Chen, K.; Yao, L.; Modi, V. Gas jet—workpiece interactions in laser machining. J. Manuf. Sci. Eng. 2000, 122, 429–438. [Google Scholar] [CrossRef]
- Mai, C.-C.; Lin, J. Flow structures around an inclined substrate subjected to a supersonic impinging jet in laser cutting. Opt. Laser Technol. 2000, 34, 479–486. [Google Scholar] [CrossRef]
- Riveiro, A.; Quintero, F.; Lusquiños, F.; Comesaña, R.; Pou, J. Parametric investigation of CO2 laser cutting of 2024-T3 alloy. J. Mater. Process. Technol. 2010, 210, 1138–1152. [Google Scholar] [CrossRef]
- Adams, M.J. Gas jet laser cutting. In Advances in Welding Processes, Proceedings of the Advances in Welding Processes, Harrogate, UK, 14–16 April 1970; The Welding Institute: Abington, UK, 1970; pp. 140–146. [Google Scholar]
- La Rocca, A.V.; Borsati, L.; Cantello, M. Nozzle design to control fluid-dynamic effects in laser cutting. In Laser Materials Processing: Industrial and Microelectronics Applications, Proceedings of the Laser Materials Processing: Industrial and Microelectronics Applications, Vienna, Austria, 3–8 April 1994; Beyer, E., Cantello, M., La Rocca, A.V., Laude, L.D., Olsen, F.O., Sepold, G., Eds.; SPIE: Bellingham, WA, USA, 1994; Volume 2207, pp. 169–180. [Google Scholar]
- Fieret, J.; Ward, B.A. Circular and non-circular nozzle exits for supersonic gas jet assist in CO2 laser cutting. In 3rd International Conference on Lasers in Manufacturing, Proceedings of the 3rd International Conference on Lasers in Manufacturing, Paris, France, 3–5 June 1986; Quenzer, A., Ed.; Springer: Berlin, Germany, 1986; pp. 45–54. [Google Scholar]
- Donaldson, C.D.; Snedeker, R.S. A study of free jet impingement. Part 1. Mean properties of free and impinging jets. J. Fluid Mech. 1971, 45, 281–319. [Google Scholar] [CrossRef]
- Carling, J.C.; Hunt, B.L. The near wall jet of a normally impinging, uniform, axysimmetric, supersonic jet. J. Fluid Mech. 1974, 66, 159–176. [Google Scholar] [CrossRef]
- Lim, C.K.; Molian, P.A.; Brown, R.C.; Prusa, J.M. Numerical studies of gas jet/molten layer interaction during laser cutting. J. Manuf. Sci. Eng. 1998, 120, 496–503. [Google Scholar] [CrossRef]
- Kovalev, O.B.; Yudin, P.V.; Zaitsev, A.V. Formation of a vortex flow at the laser cutting of sheet metal with low pressure of assisting gas. J. Phys. D Appl. Phys. 2008, 41, 155112. [Google Scholar] [CrossRef]
- Ivarson, A.; Powell, J.; Kamalu, J.; Broden, G.; Magnusson, C. The effects of oxygen purity in laser cutting mild steel: A theoretical and experimental investigations. Laser. Eng. 1993, 1, 165. [Google Scholar]
- Ivarson, A.; Powell, J.; Kamalu, J.; Magnusson, C. The oxidation dynamics of laser cutting of mild steel and the generation of striations on the cut edge. J. Mater. Process. Technol. 1994, 40, 359–374. [Google Scholar] [CrossRef]
- O’Neill, W.; Steen, W.M. A three-dimensional analysis of gas entrainment operating during the laser-cutting process. J. Phys. D Appl. Phys. 1995, 28, 12–18. [Google Scholar] [CrossRef]
- Grigoryantis, A.G. Basics of laser Material Processing; CRC Press: Boca Raton, FL, USA, 1994. [Google Scholar]
- Caristan, C.L. Laser Cutting Guide for Manufacturing; Society of Manufacturing Engineers: Dearborn, MI, USA, 2004. [Google Scholar]
- Leidinger, D.; Schuoecker, D. Investigations of the gas flow of conic-cylindrical and supersonic nozzles in a laser cut kerf. In Proceedings of the Gas Flow and Chemical Lasers: Tenth International Symposium, Friedrichshafen, France, 5–9 September 1994; pp. 577–582. [Google Scholar]
- Man, H.C.; Duan, J.; Yue, T.M. Analysis of the dynamic characteristics of gas flow inside a laser cut kerf under high cut-assist gas pressure. J. Phys. D Appl. Phys. 1999, 32, 1469–1477. [Google Scholar] [CrossRef]
- Zefferer, H.; Petring, D.; Beyer, E. Investigations of the gas flow in laser beam cutting. DVS-BERICHT 1991, 135, 210–214. [Google Scholar]
- Chen, K.; Yao, L.; Modi, V. Gas dynamic effects on laser cut quality. J. Manuf. Process. 2001, 3, 38–49. [Google Scholar] [CrossRef]
- Makashev, N.K.; Buzykin, O.G.; Asmolov, E.S. Experimental investigation of the gas flow in gas-assisted laser cutting by means of geometrically similar models. In 5th International Conference on Industrial Lasers and Laser Applications ’95, Proceedings of the 5th International Conference on Industrial Lasers and Laser Applications ’95, Shatura, Moscow, 24–26 June 1995; Panchenko, V.Y., Golubev, V.S., Eds.; SPIE: Bellingham, WA, USA, 1996; Volume 2713, pp. 253–258. [Google Scholar]
- Green, J.E. Interactions between shock waves and turbulent boundary layers. Prog. Aerosp. Sci. 1970, 11, 261–340. [Google Scholar] [CrossRef]
- Horisawa, H. Gas flow characteristics in a laser cut kerf. In Initiatives of Precision Engineering at the Beginning of a Millenium, Proceedings of the 10th International Conference on Precision Engineering (ICPE) Yokohama, Japan, 18–20 July 2001; Inasaki, I., Ed.; Springer: Berlin, Germany, 2001. [Google Scholar]
- Quintero, F.; Pou, J.; Lusquiños, F.; Boutinguiza, M.; Soto, R.; Pérez-Amor, M.; Wagner, F. Comprehensive assessment of the CO2 laser cut quality of ceramics with different assist gas injection systems. J. Laser Appl. 2004, 16, 212–220. [Google Scholar] [CrossRef]
- Horisawa, H.; Fushimi, T.; Takasaki, T.; Yamaguchi, S. Flow characterization in a laser cut kerf. In Technical Digest. CLEO/Pacific Rim ’99, Proceedings of the Pacific Rim Conference on Lasers and Electro-Optics, Seoul, Korea, 30 August–3 September 1999; IEEE: Piscataway, NJ, USA, 1999; pp. 358–359. [Google Scholar]
- Horisawa, H.; Fushimi, T.; Takasaki, T.; Yamaguchi, S. Impinging jet characterization in a laser-cut kerf. In High-Power Lasers in Manufacturing, Proceedings of the High-Power Lasers in Manufacturing, Osaka, Japan, 1–5 November 1999; Chen, X., Fujioka, T., Matsunawa, A., Eds.; SPIE: Bellingham, WA, USA, 1999; Volume 3888, pp. 644–653. [Google Scholar]
- Ketting, H.O.; Olsen, F. High pressure off-axis laser cutting of stainless steel and aluminium. In Proceedings of the International Conference on Laser Advanced Materials Processing (LAMP), Nagaoka, Japan, 7–12 June 1992; pp. 607–612. [Google Scholar]
- Arata, Y.; Maruo, H.; Miyamoto, I.; Takeuchi, S. Dynamic behavior in laser gas cutting of mild steel (welding physics, processes & instruments). Trans. JWRI 1979, 8, 175–186. [Google Scholar]
- Arata, Y.; Maruo, H.; Miyamoto, I.; Takeuchi, S. Quality in laser-gas-cutting stainless steel and its improvement. Trans. JWRI 1981, 10, 129–139. [Google Scholar]
- Semak, V.; Matsunawa, A. The role of recoil pressure in energy balance during laser materials processing. J. Phys. D Appl. Phys. 1997, 30, 2541–2552. [Google Scholar] [CrossRef]
- Riveiro, A.; Quintero, F.; Lusquiños, F.; Comesaña, R.; Pou, J. Study of melt flow dynamics and influence on quality for CO2 laser fusion cutting. J. Phys. D Appl. Phys. 2011, 44, 135501. [Google Scholar] [CrossRef]
- Yudin, P.; Kovalev, O. Visualization of events inside kerfs during laser cutting of fusible metal. J. Laser Appl. 2009, 21, 39–45. [Google Scholar] [CrossRef]
- Craik, A.D.D. Wind-generated waves in thin liquid films. J. Fluid Mech. 1966, 26, 369–392. [Google Scholar] [CrossRef]
- Asali, J.C.; Hanratty, T.J. Ripples generated on a liquid film at high gas velocities. Int. J. Multiph. Flow 1993, 19, 229–243. [Google Scholar] [CrossRef]
- Gross, M.S.; O’Neill, W. New aspects of melt flow phenomena through narrow kerfs. J. Phys. D Appl. Phys. 2007, 40, 1201–1205. [Google Scholar] [CrossRef]
- Kaplan, A.F.H. Absorptivity modulation on wavy molten steel surfaces: The influence of laser wavelength and angle of incidence. Appl. Phys. Lett. 2012, 101, 151605. [Google Scholar] [CrossRef]
- Tani, G.; Tomesani, L.; Campana, G. Prediction of melt geometry in laser cutting. Appl. Surface Sci. 2003, 208–209, 142–147. [Google Scholar] [CrossRef]
- Schulz, W.; Nießen, M.; Eppelt, U.; Kowalick, K. Simulation of Laser Cutting. In The Theory of Laser Materials Processing; Dowden, J., Ed.; Springer Science + Business Media B.V.: Dordrecht, The Netherlands, 2009; pp. 21–69. [Google Scholar]
- Tamura, K.; Yamagishi, R. Observation of the molten metal behaviors during the laser cutting of thick steel specimens using attenuated process images. J. Nucl. Sci. Technol. 2017, 54, 655–661. [Google Scholar] [CrossRef]
- Semrau, H.; Tönshoff, H.K. Laser gas cutting using Laval nozzles. In Proceedings of the Optical Sensing and Measurement Conference, Santa Clara, CA, USA, 30 October–4 November 1988; pp. 449–458. [Google Scholar]
- Zucker, R.D.; Biblarz, O. Fundamentals of Gas Dynamics; Wiley: Hoboken, NJ, USA, 2002. [Google Scholar]
- Driftmyer, R.T. A correlation of freejet data. AIAA J. 1972, 10, 1093–1095. [Google Scholar] [CrossRef]
- Man, H.C.; Duan, J.; Yue, T.M. Design and characteristic analysis of supersonic nozzles for high gas pressure laser cutting. J. Mater. Process. Technol. 1997, 63, 217–222. [Google Scholar] [CrossRef]
- Crown, B.J.C. Supersonic Nozzle Design; NOLM-10594; National Advisory Committee for Aeronautics: Washington, DC, USA, 1948.
- Foelsch, K. The analytical design of an axially symmetric Laval nozzle for a parallel and uniform jet. J. Aeronaut. Sci. 1949, 16, 161–188. [Google Scholar] [CrossRef]
- Duan, J.; Man, H.C.; Yue, T.M. Modelling the laser fusion cutting process II. Distribution of supersonic gas flow field inside the cut kerf. J. Phys. D Appl. Phys. 2001, 34, 2135–2142. [Google Scholar] [CrossRef]
- Leidinger, D.; Penz, A.; Schuöcker, D. Improved manufacturing processes with high power lasers. Infrared Phys. Technol. 1995, 36, 251–266. [Google Scholar] [CrossRef]
- Mukherjee, K.; Grendzwell, T.; Khan, P.A.A.; McMillin, C. Gas flow parameters in laser cutting of wood-nozzle design. For. Prod. J. 1990, 40, 39–42. [Google Scholar]
- Boutinguiza, M.; Pou, J.; Lusquiños, F.; Quintero, F.; Soto, R.; Perez-Amor, M.; Watkins, K.; Steen, W.M. CO2 laser cutting of slate. Opt. Lasers Eng. 2002, 37, 15–25. [Google Scholar] [CrossRef]
- Torre, F.L.; Kenjeres, S.; Kleijn, C.R.; Moerel, J.-L.P.A. Effects of wavy surface roughness on the performance of micronozzles. J. Propuls. Power 2010, 26, 655–662. [Google Scholar] [CrossRef]
- Rand, C. The Study of Sonic and Supersonic Jet-Kerf Dynamics in Optimised Laser Cutting. Ph.D. Thesis, The University of Liverpool, Liverpool, UK, 2004. [Google Scholar]
- Riveiro, A.; Quintero, F.; Lusquiños, F.; Pou, J.; Pérez-Amor, M. Laser cutting of 2024-T3 aeronautic aluminium alloys. J. Laser Appl. 2008, 20, 230–235. [Google Scholar] [CrossRef]
- Rand, C.; Sparkes, M.; O’Neill, W.; Sutcliffe, C.; Brookfield, D. Optimisation of melt removal in laser cutting. In Proceedings of the 22nd International Congress on Laser Materials Processing and Laser Microfabrication, Jacksonville, FL, USA, 13–16 October 2003. [Google Scholar]
- Anon. Burr-free laser cutting of aluminium materials. Gratfreies Laserschneiden von Al-Werkstoffen 1990, 31, 151–152. [Google Scholar]
- Biermann, B.; Biermann, S.; Bergmann, H.W. Cutting of Al-alloys using high-pressure coaxial nozzle. J. Laser Appl. 1991, 3, 13–20. [Google Scholar] [CrossRef]
- Ketting, H.-O.; Schwendner, K.; Bech-Nielsen, G.; Chorkendorff, I.; Olsen, F.O. Advanced surface analysis on high-pressure CO2 laser cut test pieces in pure and alloyed aluminum. In Proceedings of the Laser Materials Processing: Industrial and Microelectronics Applications, Vienna, Austria, 3–8 April 1994; pp. 534–545. [Google Scholar]
- Tomie, M.; Abe, N.; Noguchi, S.; Oda, T.; Arata, Y. High power CO2 laser cutting and welding of ceramics. Trans. JWRI 1989, 18, 37–41. [Google Scholar]
- Chryssolouris, G.; Choi, W.C. Gas jet effects on laser cutting. In Proceedings of the CO2 Lasers and Applications, Los Angeles, CA, USA, 15–20 January 1989; Evans, J.D., Locke, E.V., Eds.; SPIE: Bellingham, WA, USA, 1989; Volume 1042, pp. 86–96. [Google Scholar]
- Ilavarsan, P.M.; Molian, P.A. Laser cutting of thick sectioned steels using gas flow impingement on the erosion front. J. Laser Appl. 1995, 7, 199–209. [Google Scholar] [CrossRef]
- Hsu, M.J.; Molian, P.A. Off-axial, gas-jet-assisted, laser cutting of 6.35-mm thick stainless steel. J. Eng. Ind. 1995, 117, 272–276. [Google Scholar] [CrossRef]
- Schüocker, D. Dynamic phenomena in laser cutting and cut quality. Appl. Phys. B 1986, 40, 9–14. [Google Scholar] [CrossRef]
- Graaskov, H.J.; Soegaard, S.H.; Olsen, F.O. Off-axis CO2-laser cutting with on-line beam positioning system. In Proceedings of the Laser Materials Processing Conference, Orlando, FL, USA, 24–28 October 1993; pp. 288–295. [Google Scholar]
- Brandt, A.D.; Settles, G.S. Effect of nozzle orientation on the gas dynamics of inert-gas laser cutting of mild steel. J. Laser Appl. 1997, 9, 269–277. [Google Scholar] [CrossRef]
- Settles, G.S. Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media; Springer Science & Business Media: Berlin, Germany, 2001. [Google Scholar]
- Riveiro, A.; Quintero, F.; Lusquiños, F.; Pou, J.; Salminen, A.; Kujanpaa, V. Influence of assist gas in fibre laser cutting of 2024-T3 al-alloy. In Proceedings of the 27th International Congress on Laser Materials Processing, Laser Microprocessing and Nanomanufacturing, Temecula, CA, USA, 20–23 October 2008; pp. 688–694. [Google Scholar]
- Quintero, F.; Pou, J.; Fernández, J.L.; Doval, A.F.; Lusquiños, F.; Boutinguiza, M.; Soto, R.; Pérez-Amor, M. Optimization of an off-axis nozzle for assist gas injection in laser fusion cutting. Opt. Laser. Eng. 2006, 44, 1158–1171. [Google Scholar] [CrossRef]
- Quintero, F.; Pou, J.; Lusquiños, F.; Boutinguiza, M.; Soto, R.; Pérez-Amor, M. Comparative study of the influence of the gas injection system on the Nd:yttrium-aluminum-garnet laser cutting of advanced oxide ceramics. Rev. Sci. Instrum. 2003, 74, 4199–4205. [Google Scholar] [CrossRef]
- Riveiro, A.; Quintero, F.; Pou, J.; Lusquiños, F.; Comesaña, R.; del Val, J.; Boutinguiza, M.; Soto, R. Laser cutting of aerospace aluminum. Ind. Laser Solut. 2008, 13, 13–19. [Google Scholar]
- Riveiro, A.; Quintero, F.; Lusquiños, F.; Comesaña, R.; del Val, J.; Pou, J. The role of the assist gas nature in laser cutting of aluminum alloys. Phys. Procedia 2011, 12, 548–554. [Google Scholar] [CrossRef]
- Ilavarsan, P.M.; Molian, P.A. Design, fabrication and testing of an off-axial gas jet nozzle for enhanced laser cutting. In Proceedings of the Laser Materials Processing Conference, Orlando, FL, USA, 24–28 October 1993; pp. 350–360. [Google Scholar]
- Masuda, W.; Nakamura, T.; Kobayashi, M.; Saito, H. An experimental study on an underexpanded annular impinging jet. JSME Int. J. Ser. 2 Fluid. Eng. Heat Transf. Power Combust. Thermophys. Prop. 1990, 33, 674–679. [Google Scholar] [CrossRef]
- Masuda, W.; Nakamura, T. Effects of nozzle contour on the aerodynamic characteristics of underexpanded annular impinging jets. JSME Int. J. Ser. B Fluids Therm. Eng. 1993, 36, 238–244. [Google Scholar] [CrossRef]
- Masuda, W.; Moriyama, E. Aerodynamic characteristics of underexpanded coaxial impinging jets. JSME Int. J. Ser. B Fluids Therm. Eng. 1994, 37, 769–775. [Google Scholar] [CrossRef]
- Powell, J.; Ivarson, A.; Kamalu, J.; Broden, G.; Magnusson, C. The role of purity in laser cutting of mild Steel. In Proceedings of the Laser Materials Processing Symposium, Orlando, FL, USA, 25–29 October 1992; pp. 433–442. [Google Scholar]
- Thomassen, F.B.; Olsen, F.O. Experimental studies in nozzle design for laser cutting. In Proceedings of the 1st International Conference on Lasers in Manufacturing, Brighton, UK, 1–3 November 1983; pp. 169–180. [Google Scholar]
- Fieret, J.; Terry, M.J.; Ward, B.A. Overview of flow dynamics in gas-assisted laser cutting. In Proceedings of the High Power Lasers: Sources, Laser-Material Interactions, High Excitations, and Fast Dynamics in Laser Processing and Industrial Applications, The Hague, The Netherlands, 31 March–3 April 1987; pp. 243–250. [Google Scholar]
- Tritton, D.J. Physical Fluid Dynamics; Clarendon Press: Oxford, UK, 1988; p. 536. [Google Scholar]
- Rodrigues, G.C.; Decroos, C.; Duflou, J.R. Considerations on assist gas jet optimization in laser cutting with direct diode laser. Procedia Eng. 2017, 183, 37–44. [Google Scholar] [CrossRef]
- Riveiro, A.; Quintero, F.; del Val, J.; Boutinguiza, M.; Comesaña, R.; Lusquiños, F.; Pou, J. Laser cutting using off-axial supersonic rectangular nozzles. Precis. Eng. 2018, 51, 78–87. [Google Scholar] [CrossRef]
Laser Beam | Beam Guidance | Assist Gas | Transport Properties | Material |
---|---|---|---|---|
Wavelength | Focusing element | Chemical composition | Cutting speed | Absorptance |
Beam diameter | Focal length | Density | Density | |
Beam mode | Focus position | Viscosity | Viscosity | |
Beam parameter product | Assist pressure | Melting point | ||
Spatial intensity distribution (Beam profile) | Nozzle geometry | Evaporation point | ||
Polarization | Nozzle diameter | Specific heat capacities | ||
CW/Pulsed mode | Nozzle alignment | Thermal diffusivity | ||
Pulse frequency | Stand-off distance | Latent heat of fusion | ||
Duty cycle | Latent heat of evaporation |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riveiro, A.; Quintero, F.; Boutinguiza, M.; Del Val, J.; Comesaña, R.; Lusquiños, F.; Pou, J. Laser Cutting: A Review on the Influence of Assist Gas. Materials 2019, 12, 157. https://doi.org/10.3390/ma12010157
Riveiro A, Quintero F, Boutinguiza M, Del Val J, Comesaña R, Lusquiños F, Pou J. Laser Cutting: A Review on the Influence of Assist Gas. Materials. 2019; 12(1):157. https://doi.org/10.3390/ma12010157
Chicago/Turabian StyleRiveiro, Antonio, Félix Quintero, Mohamed Boutinguiza, Jesús Del Val, Rafael Comesaña, Fernando Lusquiños, and Juan Pou. 2019. "Laser Cutting: A Review on the Influence of Assist Gas" Materials 12, no. 1: 157. https://doi.org/10.3390/ma12010157
APA StyleRiveiro, A., Quintero, F., Boutinguiza, M., Del Val, J., Comesaña, R., Lusquiños, F., & Pou, J. (2019). Laser Cutting: A Review on the Influence of Assist Gas. Materials, 12(1), 157. https://doi.org/10.3390/ma12010157