In-Situ and Ex-Situ Characterization of Femtosecond Laser-Induced Ablation on As2S3 Chalcogenide Glasses and Advanced Grating Structures Fabrication
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Smektala, F.; Quemard, C.; Leneindre, L.; Lucas, J.; Barthélémy, A.; Angelis, C.D. Chalcogenide glasses with large non-linear refractive indices. J. Non-Cryst. Solids 1998, 239, 139–142. [Google Scholar] [CrossRef]
- Petkov, K.; Ewen, P.J.S. Photoinduced changes in the linear and non-linear optical properties of chalcogenide glasses. J. Non-Cryst. Solids 1999, 249, 150–159. [Google Scholar] [CrossRef]
- Sanghera, J.S.; Shaw, L.B.; Aggarwal, I.D. Chalcogenide Glass-Fiber-Based Mid-IR Sources and Applications. IEEE J. Sel. Top. Quantum Electron. 2009, 15, 114–119. [Google Scholar] [CrossRef]
- Shimakawa, K.; Kolobov, A.; Elliott, S.R. Photoinduced effects and metastability in amorphous semiconductors and insulators. Adv. Phys. 1995, 44, 475–588. [Google Scholar] [CrossRef]
- Marie-Laure, A.; Julie, K.; Virginie, N.; Koji, H.; Satoru, I.; Catherine, B.P.; Hervé, L.; Joël, C.; Kiyoyuki, Y.; Olivier, L. Chalcogenide Glass Optical Waveguides for Infrared Biosensing. Sensors 2009, 9, 7398–7411. [Google Scholar] [Green Version]
- Madden, S.J.; Choi, D.; Bulla, D.A.; Rode, A.V.; Lutherdavies, B.; Ta’Eed, V.G.; Pelusi, M.D.; Eggleton, B.J. Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration. Opt. Express 2007, 15, 14414–14421. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Rho, Y.; Shou, W.; Hong, S.; Kato, K.; Eliceiri, M.; Shi, M.; Grigoropoulos, C.P.; Pan, H.; Carraro, C. Programming Nanoparticles in Multiscale: Optically Modulated Assembly and Phase Switching of Silicon Nanoparticle Array. ACS Nano 2018, 12, 2231. [Google Scholar] [CrossRef] [PubMed]
- Qi, D.; Tang, S.; Wang, L.; Dai, S.; Shen, X.; Wang, C.; Chen, S. Pulse laser-induced size-controllable and symmetrical ordering of single-crystal Si islands. Nanoscale 2018, 10, 8133–8138. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Lin, H.; Jia, B.; Xu, L.; Gu, M. Nanogratings and nanoholes fabricated by direct femtosecond laser writing in chalcogenide glasses. Opt. Express 2010, 18, 6885–6890. [Google Scholar] [CrossRef]
- Velea, A.; Popescu, M.; Sava, F.; Lorinczi, A.; Simandan, I.D.; Socol, G.; Mihailescu, I.N.; Stefan, N.; Jipa, F.; Zamfirescu, M. Photoexpansion and nano-lenslet formation in amorphous As2S3 thin films by 800 nm femtosecond laser irradiation. J. Appl. Phys. 2012, 112, 499. [Google Scholar] [CrossRef]
- You, C.; Dai, S.; Zhang, P.; Xu, Y.; Wang, Y.; Xu, D.; Wang, R. Mid-infrared femtosecond laser-induced damages in As2S3 and As2Se3 chalcogenide glasses. Sci. Rep. 2017, 7, 6497. [Google Scholar] [CrossRef] [PubMed]
- Cumming, B.P.; Debbarma, S.; Luther-Davies, B.; Gu, M. Effect of refractive index mismatch aberration in arsenic trisulfide. Appl. Phys. B 2012, 109, 227–232. [Google Scholar] [CrossRef]
- Blackburn, D.H.; Osmalov, J.S. Properties of arsenic sulfide glass. J. Res. Natl. Bur. Stand. 1957, 59, 2774. [Google Scholar]
- Richardson, M.C.; Zoubir, A.; Rivero, C.; Lopez, C.; Petit, L.C.; Richardson, K.A. Femtosecond laser microstructuring and refractive index modification applied to laser and photonic devices. Proc. SPIE–Int. Soc. Opt. Eng. 2004, 5347, 18–27. [Google Scholar]
- Juodkazis, S.; Rode, A.V.; Matsuo, S. Three-dimensional recording and structuring of chalcogenide glasses by femtosecond pulses. Int. Symp. Laser Precis. Microfabr. 2004, 5662, 179–184. [Google Scholar]
- Mihailov, S.J.; Dan, G.; Smelser, C.W.; Lu, P.; Walker, R.B.; Ding, H. Bragg grating inscription in various optical fibers with femtosecond infrared lasers and a phase mask. Opt. Mater. Express 2011, 1, 754–765. [Google Scholar] [CrossRef]
- Kohoutek, T.; Hughes, M.A.; Orava, J.; Mastumoto, M.; Misumi, T.; Kawashima, H.; Suzuki, T.; Ohishi, Y. Direct laser writing of relief diffraction gratings into a bulk chalcogenide glass. J. Opt. Soc. Am. B 2012, 29, 2779. [Google Scholar] [CrossRef]
- Hughes, M.; Yang, W.; Hewak, D. Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass. Appl. Phys. Lett. 2007, 90, 704. [Google Scholar] [CrossRef]
- James, S.W.; Tatam, R.P. Optical fibre long-period grating sensors: characteristics and application. Meas. Sci. Technol. 2003, 14, 49–61. [Google Scholar] [CrossRef]
- Pudo, D.; Mägi, E.C.; Eggleton, B.J. Long-period gratings in chalcogenide fibers. Opt. Express 2006, 14, 3763–3766. [Google Scholar] [CrossRef]
- Finsterbusch, K.; Baker, N.; Ta’Eed, V.G.; Eggleton, B.J.; Choi, D.; Madden, S.; Lutherdavis, B. Long-period gratings in chalcogenide rib waveguides. Electron. Lett. 2006, 42, 1094–1095. [Google Scholar] [CrossRef]
- Rebollar, E.; Vázquez de Aldana, J.R.; Pérez-Hernández, J.A.; Ezquerra, T.A.; Moreno, P.; Castillejo, M. Ultraviolet and infrared femtosecond laser induced periodic surface structures on thin polymer films. Appl. Phys. Lett. 2012, 100, 041106. [Google Scholar] [CrossRef] [Green Version]
- Favazza, C.; Kalyanaraman, R.; Sureshkumar, R. Robust nanopatterning by laser-induced dewetting of metal nanofilms. Nanotechnology 2006, 17, 4229. [Google Scholar] [CrossRef] [PubMed]
- Hono, K.; Ohkubo, T.; Chen, Y.M.; Kodzuka, M.; Ohishi, K.; Sepehriamin, H.; Li, F.; Kinno, T.; Tomiya, S.; Kanitani, Y. Broadening the applications of the atom probe technique by ultraviolet femtosecond laser. Ultramicroscopy 2011, 111, 576–583. [Google Scholar] [CrossRef] [PubMed]
- Greenfield, M.; Guo, Y.Q.; Bernstein, E.R. Ultrafast photodissociation dynamics of HMX and RDX from their excited electronic states via femtosecond laser pump–probe techniques. Chem. Phys. Lett. 2006, 430, 277–281. [Google Scholar] [CrossRef]
- Mouskeftaras, A.; Guizard, S.; Fedorov, N.; Klimentov, S. Mechanisms of femtosecond laser ablation of dielectrics revealed by double pump–probe experiment. Appl. Phys. A 2013, 110, 709–715. [Google Scholar] [CrossRef]
- Qi, D.; Zhang, Z.; Yu, X.; Zhang, Y. Visualization of nanosecond laser-induced dewetting, ablation and crystallization processes in thin silicon films. Phys. Lett. A 2018, 1540–1544. [Google Scholar] [CrossRef]
- Zhang, N.; Zhu, X.; Yang, J.; Wang, X.; Wang, M. Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum. Phys. Rev. Lett. 2007, 99, 167602. [Google Scholar] [CrossRef]
- Qi, D.; Paeng, D.; Yeo, J.; Kim, E.; Wang, L.; Chen, S.; Grigoropoulos, C.P. Time-resolved analysis of thickness-dependent dewetting and ablation of silver films upon nanosecond laser irradiation. Appl. Phys. Lett. 2016, 108, 193. [Google Scholar] [CrossRef]
- Georgescu, G.; Sava, F.; Rares-Medianu, M. Structure of bulk glassy As2Se3 and As2S3. J. Optoelectron. Adv. Mater. 2006, 8, 1801–1805. [Google Scholar]
- Zhang, H.; Oosten, D.V.; Krol, D.M.; Dijkhuis, J.I. Saturation effects in femtosecond laser ablation of silicon-on-insulator. Appl. Phys. Lett. 2011, 99, 214101. [Google Scholar] [CrossRef]
- Shaaban, E.R. Optical characterization of arsenic sulfide semiconducting glass films using the transmittance measurements. Mater. Chem. Phys. 2006, 100, 411–417. [Google Scholar] [CrossRef]
- Marquez, E.; Ramirezmalo, J.; Villares, P.; Jimenezgaray, R.; Ewen, P.J.S.; Owen, A.E. Calculation of the thickness and optical constants of amorphous arsenic sulphide films from their transmission spectra. J. Phys. D Appl. Phys. 2000, 139, 535. [Google Scholar] [CrossRef]
- Kosa, T.I.; Rangel-Rojo, R.; Hajto, E.; Ewen, P.J.S.; Owen, A.E.; Kar, A.K.; Wherrett, B.S. Nonlinear optical properties of silver-doped As2S3. J. Non-Cryst. Solids 1993, 164–166, 1219–1222. [Google Scholar] [CrossRef]
- Synowicki, R.A.; Tiwald, T.E. Optical properties of bulk c-ZrO2, c-MgO and a-As2S3 determined by variable angle spectroscopic ellipsometry. Thin Solid Films 2004, 455, 248–255. [Google Scholar] [CrossRef]
- Jandeleit, J.; Urbasch, G.; Hoffmann, H.D.; Treusch, H.G.; Kreutz, E.W. Picosecond laser ablation of thin copper films. Appl. Phys. A 1996, 63, 117–121. [Google Scholar] [CrossRef]
- Krause, S.; Miclea, P.T.; Steudel, F.; Schweizer, S.; Seifert, G. Precise microstructuring of indium-tin oxide thin films on glass by selective femtosecond laser ablation. EPJ Photovolt. 2013, 4, 40601. [Google Scholar] [CrossRef] [Green Version]
- Qiu, T.Q.; Tien, C.L. Femtosecond laser heating of multi-layer metals—I. Analysis. Int. J. Heat Mass Transf. 1994, 37, 2789–2797. [Google Scholar] [CrossRef]
- Sanghera, J.S.; Aggarwal, I.D. Active and passive chalcogenide glass optical fibers for IR applications: A review. J. Non-Cryst. Solids 1999, 256–257, 6–16. [Google Scholar] [CrossRef]
- Espeau, P.; Tamarit, J.L.; Barrio, M.; López, D.Ó.; Perrin, M.A.; Allouchi, H.; Céolin, R. Solid State Studies on Synthetic and Natural Crystalline Arsenic(III) Sulfide, As2S3 (Orpiment): New Data for an Old Compound. Chem. Mater. 2006, 18, 3821–3826. [Google Scholar] [CrossRef]
- Sheng, W.W.; Westgate, C.R. On the preswitching phenomena in semiconducting glasses. Solid State Commun. 1971, 9, 387–391. [Google Scholar] [CrossRef]
- Hattori, M.; Nagaya, K.; Umebachi, S.; Tanaka, M. Heat capacities of AsS glasses. J. Non-Cryst. Solids 1970, 3, 195–204. [Google Scholar] [CrossRef]
- Juodkazis, S.; Misawa, H.; Louchev, O.A.; Kitamura, K. Femtosecond laser ablation of chalcogenide glass: Explosive formation of nano-fibres against thermo-capillary growth of micro-spheres. Nanotechnology 2006, 17, 4802–4805. [Google Scholar] [CrossRef]
- Juodkazis, S.; Kondo, T.; Misawa, H.; Rode, A.; Samoc, M.; Luther-Davies, B. Photo-structuring of As2S3 glass by femtosecond irradiation. Opt. Express 2006, 14, 7751–7756. [Google Scholar] [CrossRef] [PubMed]
As2S3 (Parameters) | Values |
---|---|
Initial temperature (T0) | 300 K |
Thermal conductivity (k) | 0.17 W·m−1·C−1 |
Lattice heat capacity (Ci) | 1 × 106 J·m−3·K−1 |
Electron heat capacity (Ce) | 502 J·Kg−1·K−1 |
Electron-phonon coupling factor (G) | 2.6 × 1016 W·m−3·K−1 |
Reflection coefficient (R) | 0.6 |
Radiation penetration depth (δ) | 15.3 nm |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Qi, D.; Yu, X.; Zhang, Y.; Zhang, Z.; Xu, T.; Zhang, X.; Dai, S.; Shen, X.; Song, B.; et al. In-Situ and Ex-Situ Characterization of Femtosecond Laser-Induced Ablation on As2S3 Chalcogenide Glasses and Advanced Grating Structures Fabrication. Materials 2019, 12, 72. https://doi.org/10.3390/ma12010072
Wang H, Qi D, Yu X, Zhang Y, Zhang Z, Xu T, Zhang X, Dai S, Shen X, Song B, et al. In-Situ and Ex-Situ Characterization of Femtosecond Laser-Induced Ablation on As2S3 Chalcogenide Glasses and Advanced Grating Structures Fabrication. Materials. 2019; 12(1):72. https://doi.org/10.3390/ma12010072
Chicago/Turabian StyleWang, Hongyang, Dongfeng Qi, Xiaohan Yu, Yawen Zhang, Zifeng Zhang, Tiefeng Xu, Xiaowei Zhang, Shixun Dai, Xiang Shen, Baoan Song, and et al. 2019. "In-Situ and Ex-Situ Characterization of Femtosecond Laser-Induced Ablation on As2S3 Chalcogenide Glasses and Advanced Grating Structures Fabrication" Materials 12, no. 1: 72. https://doi.org/10.3390/ma12010072
APA StyleWang, H., Qi, D., Yu, X., Zhang, Y., Zhang, Z., Xu, T., Zhang, X., Dai, S., Shen, X., Song, B., Zhang, P., & Xu, Y. (2019). In-Situ and Ex-Situ Characterization of Femtosecond Laser-Induced Ablation on As2S3 Chalcogenide Glasses and Advanced Grating Structures Fabrication. Materials, 12(1), 72. https://doi.org/10.3390/ma12010072