Temperature Effects during Impact Testing of a Two-Phase Metal-Ceramic Composite Material
Abstract
:1. Introduction
2. Numerical Model
2.1. Problem Statement
2.2. Material Properties
3. Illustrative Example
4. Analysis and Discussion of the Two-Phase Polycrystalline Material
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jones, S.E.; Drinkard, J.A.; Rule, W.K.; Wilson, L.L. An elementary theory for the Taylor bar impact test. Int. J. Impact Eng. 1998, 21, 1–13. [Google Scholar] [CrossRef]
- Woodward, R.L.; Burman, N.M.; Baxter, B.J. An experimental and analytical study of the Taylor bar impact test. Int. J. Impact Eng. 1994, 15, 407–416. [Google Scholar] [CrossRef]
- Wriggers, P.; Miehe, C.; Kleiber, M.; Simo, J.C. On the coupled thermomechanical treatment of necking problems via finite element methods. Int. J. Numer. Meth. Eng. 1992, 33, 869–883. [Google Scholar] [CrossRef]
- Kleiber, M. Computational coupled non-associative thermo-plasticity. Comput. Methods Appl. Mech. Eng. 1993, 90, 943–967. [Google Scholar] [CrossRef]
- Felippa, C.A.; Park, K.C. Staggered transient analysis procedures for coupled dynamic systems. Comput. Methods Appl. Mech. Eng. 1980, 26, 61–112. [Google Scholar] [CrossRef]
- Vaz, M.; Owen, D.R.J. Thermo-Mechanical Coupling: Models, Strategies and Application; University of Wales: Swansea, UK, 1996. [Google Scholar]
- Służalec, A. Introduction to Nonlinear Thermomechanics; Springer: Berlin, Germany, 1992. [Google Scholar] [CrossRef]
- Postek, E.W.; Lewis, R.W.; Gethin, D.T.; Ransing, R.S. Influence of initial stresses on the cast behavior during squeeze forming processes. J. Mater. Process. Technol. 2006, 16, 539–572. [Google Scholar] [CrossRef]
- Postek, E.; Lewis, R.W.; Gethin, D.T. Finite element modeling of the squeeze casting process. Int. J. Numer. Meth. Haet Fluid Flow. 2008, 18, 325–355. [Google Scholar] [CrossRef]
- Rojek, J.; Oñate, E.; Postek, E. Application of explicit FE codes to simulation of sheet and bulk metal forming processes. J. Mater. Process. Technol. 1998, 80, 620–627. [Google Scholar] [CrossRef]
- Rojek, J.; Zienkiewicz, O.C.; Oñate, E.; Postek, E. Advances in FE explicit formulation for simulation of metalforming processes. J. Mater. Process. Technol. 2001, 119, 41–47. [Google Scholar] [CrossRef]
- Cinefra, M.; Valvano, S.; Carrera, E. Thermal stress analysis of laminated structures by a variable kinematic MITC9 shell element. J. Therm. Stresses 2016, 39, 121–141. [Google Scholar] [CrossRef]
- Carrera, E.; Valvano, S. A variable kinematic shell formulation applied to thermal stress of laminated structures. J. Therm. Stresses 2017, 40, 803–827. [Google Scholar] [CrossRef]
- Sadowski, T.; Hardy, S.; Postek, E. Prediction of the mechanical response of polycrystalline ceramics containing metallic intergranular layers under uniaxial tension. Comp. Mater. Sci. 2005, 34, 46–63. [Google Scholar] [CrossRef]
- Postek, E.; Sadowski, T. Assesing the influence of porosity in the deformation of metal-ceramic composites. Compos. Interface. 2011, 18, 57–76. [Google Scholar] [CrossRef]
- Postek, E.; Sadowski, T. Cracks in interfaces and around their junctions in WC/Co composite. Eng. Trans. 2016, 4, 589–596, ISSN:0867-888X. [Google Scholar]
- Postek, E.; Sadowski, T. Distributed microcracking process of WC/Co cermet under dynamic impulse compressive loading. Compos. Struct. 2018, 194, 494–508. [Google Scholar] [CrossRef]
- Postek, E.; Sadowski, T. Dynamic pulse sensitivity of WC/Co composite. Compos. Struct. 2018, 203, 498–512. [Google Scholar] [CrossRef]
- Postek, E.; Sadowski, T. Qualitative comparison of dynamic compressive pressure load and impact of WC/Co composite. Int. J. Refract. Met. Hard Mater. 2018, 77, 68–81. [Google Scholar] [CrossRef]
- Fang, H.; Zhang, Q.; Pan, Y.; Wang, S.; Zhou, N.; Zhou, L. Characteristics of Thermal Stress Evolution During the Cooling Stage of Multicrystalline Silicon. J. Therm. Stresses 2013, 36, 947–961. [Google Scholar] [CrossRef]
- Zhou, N.; Lin, M.; Wan, M.; Zhou, L. Lowering Dislocation Density of Directionally Grown Multicrystalline Silicon Ingots for Solar Cells by Simplifying Their Post-Solidification Processes—A Simulation Approach. J. Therm. Stresses 2015, 38, 146–155. [Google Scholar] [CrossRef]
- Govila, R.K. Strength characterization of yttria-partially stabilized zirconia/alumina composite. J. Mater. Sci. 1993, 28, 700–718. [Google Scholar] [CrossRef]
- Boniecki, M.; Gołębiewski, P.; Wesołowski, W.; Woluntarski, M.; Piątkowska, A.; Romaniec, M.; Ciepielewski, P.; Krzyżak, K. Alumina/zirconia composites toughned by graphene flakes. Ceram. Int. 2017, 43, 10066–10070. [Google Scholar] [CrossRef]
- Sadowski, T.; Marsavina, L. Multiscale modelling of two-phase ceramic matrix composites. Comput. Mat. Sci. 2011, 50, 1336–1346. [Google Scholar] [CrossRef]
- Boniecki, M.; Librant, Z.; Wesołowski, W. High temperature deformation of ceramic particle composites. J. Eur. Cer. Soc. 2012, 32, 1–8. [Google Scholar] [CrossRef]
- Sadowski, T. Gradual degradation in two-phase ceramic composites under compression. Comput. Mat. Sci. 2012, 64, 209–211. [Google Scholar] [CrossRef]
- Sadowski, T.; Pankowski, B. Numerical modelling of two-phase ceramic composite response under uniaxial loading. Compos. Struct. 2016, 143, 388–394. [Google Scholar] [CrossRef]
- Acchar, W.; Cairo, C.A. The influence of (Ti,W)C and NbC on the mechanical behavior of alumina. Mat. Res. 2006, 9, 171–174. [Google Scholar] [CrossRef]
- Yin, Z.; Huang, C.; Zou, B.; Liu, H.; Zhu, H.; Wang, J. High temperature mechanical properties of Al2O3/TiC micro-nano-composite ceramic tool materials. Ceram. Int. 2013, 8, 8877–8883. [Google Scholar] [CrossRef]
- Dębski, H.; Sadowski, T. Modelling of microcracks initation and evolution along interfaces of the WC/Co composite by the finite element method. Comp. Mater. Sci. 2014, 83, 403–411. [Google Scholar] [CrossRef]
- Abaqus 6.13. User’s Manual. Available online: http://dsk.ippt.pan.pl/docs/abaqus/v6.13/index.html (accessed on 2 April 2019).
- Taylor, G.I.; Quinney, H. The latent energy remaining in a metal after cold working. Proc. R. Soc. Lond. A 1934, 143, 307–326. [Google Scholar] [CrossRef]
- Johnson, G.R.; Cook, W.H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 1985, 21, 31–48. [Google Scholar] [CrossRef]
- Felten, F.; Schneider, G.; Sadowski, T. Estimation of R-curve in WC/Co cermet by CT test. Int. J. Refract. Met. Hard Mater. 2008, 26, 55–60. [Google Scholar] [CrossRef]
- Sigl, L.S.; Exner, H.E. Experimental study of the mechanics of fracture in WC/Co alloys. Metall. Mater. Trans. A 1987, 18, 1299–1308. [Google Scholar] [CrossRef]
- Hickman, R.J.; Wise, J.L.; Smith, J.A.; Mersch, J.P.; Robin, C.V.; Arguello, J.G. Observation and Simulation of Motion and Deformation for Impact-Loaded Cylinders. In AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2017. [Google Scholar]
- Patran, MSC Software. Available online: http://www.mscsoftware.com/product/patran (accessed on 2 April 2019).
- GiD. The personal pre and post processor. Available online: http://www.gidhome.com (accessed on 2 April 2019).
- Taylor, G.I. The use of flat-ended projectiles for determining dynamic yield stress. Proc. R. Soc. Lond. A 1948, 194, 289–299. [Google Scholar] [CrossRef]
- Sadowski, T.; Golewski, P.; Kneć, M. Experimental investigation and numerical modelling of spot welding-adhesive joints response. Compos. Struct. 2014, 112, 66–77. [Google Scholar] [CrossRef]
- Golewski, G.; Sadowski, T. An analysis of shear fracture toughness KIIc and mictrostructure in concrete containing fly-ash. Constr. Build. Mater. 2014, 51, 207–214. [Google Scholar] [CrossRef]
- Gajewski, J.; Sadowski, T. Sensitivity analysis of crack propagation in pavement bituminous layered structures using a hybrid system integrating Artificial Neural Networks and Finite Element Method. Comput. Mat. Sci. 2014, 82, 114–117. [Google Scholar] [CrossRef]
- Birsan, M.; Sadowski, T.; Marsavina, L.; Linul, E.; Pietras, D. Mechanical behavior of sandwich composite beams made of foam and functionally graded materials. Int. J. Solids Struct. 2013, 50, 519–530. [Google Scholar] [CrossRef]
- Marsavina, L.; Linul, E.; Constantinescu, D.; Apostol, D.; Voiconi, T.; Sadowski, T. Refinements on fracture toughness of PUR foams. Eng. Fract. Mech. 2014, 129, 54–66. [Google Scholar] [CrossRef]
- Burlayenko, V.; Altenbach, H.; Sadowski, T.; Dimitrova, S.D. Computational simulations of thermal shock cracking by the virtual crack closure technique in a functionally graded plate. Comput. Mat. Sci. 2016, 116, 11–21. [Google Scholar] [CrossRef]
- Sadowski, T.; Neubrand, A. Estimation of the crack length after thermal shock in FGM strip. Int. J. Fract. 2004, 127, 135–140. [Google Scholar] [CrossRef]
- Ivanov, I.V.; Sadowski, T.; Pietras, D. Crack propagation in functionally graded strip. Eur. Phys. J. Spec. Top. 2013, 222, 1587–1595. [Google Scholar] [CrossRef]
- Sadowski, T. Modelling of semi-brittle MgO ceramics behavior under compression. Mech. Mater. 1994, 18, 1–16. [Google Scholar] [CrossRef]
- Marsavina, L.; Sadowski, T. Stress intensity factors for an interface kinked crack in a bi-material plate loaded normal to the interface. Int. J. Frac. 2007, 145, 237–243. [Google Scholar] [CrossRef]
- Sadowski, T.; Bęc, J. Effective properties for sandwich plates with aluminium foil honeycomb core and polymer foam filling—Static and dynamic response. Comput. Mat. Sci. 2011, 50, 1269–1275. [Google Scholar] [CrossRef]
- Sadowski, T.; Golewski, P. Multidisciplinary analysis of the operational temperature increase of turbine blades in combustion engines by application of the ceramic thermal barrier coatings (TBC). Comput. Mat. Sci. 2011, 50, 1326–1335. [Google Scholar] [CrossRef]
- Sadowski, T.; Marsavina, L.; Peride, N.; Craciun, E.M. Cracks propagation and interaction in an orthotropic elastic material: Analytical and numerical methods. Comput. Mat. Sci. 2009, 46, 687–693. [Google Scholar] [CrossRef]
- Sadowski, T.; Ataya, S.; Nakonieczny, K. Thermal analysis of layered FGM cylindrical plates subjected to sudden cooling process at one side—Comparison of two applied methods for problem solution. Comput. Mat. Sci. 2009, 45, 624–632. [Google Scholar] [CrossRef]
- Sadowski, T.; Nakonieczny, K. Thermal shock response of FGM cylindrical plates with various grading patterns. Comput. Mat. Sci. 2008, 43, 171–178. [Google Scholar] [CrossRef]
- Marsavina, L.; Sadowski, T. Fracture parameters at bi-material ceramic interfaces under bi-axial state of stress. Comput. Mat. Sci. 2009, 45, 693–697. [Google Scholar] [CrossRef]
- Marsavina, L.; Sadowski, T. Kinked cracks at a bi-material ceramic interface—Numerical determination of fracture parameters. Comput. Mat. Sci. 2009, 44, 941–950. [Google Scholar] [CrossRef]
Parameters | Values and Units |
---|---|
Young’s modulus | 2.1 × 105 MPa |
Poisson’s coefficient | 0.296 |
Yield stress (A) | 455.0 MPa |
Hardening coefficient (B) | 2475.0 MPa |
Hardening exponent (n) | 0.9 |
Strain rate coefficient C | 0.0235 |
Thermal softening exponent (m) | 1.0 |
Melt temperature Tmelt | 1728 K |
Transition temperature Ttrans | 293 K |
Specific heat CH | 440 J/(kg·K) |
Thermal conductivity K | 150 W/(m·K) |
Thermal expansion αt | 5.0 × 10−5 1/K |
Mass density | 9130 kg/m3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Postek, E.; Sadowski, T. Temperature Effects during Impact Testing of a Two-Phase Metal-Ceramic Composite Material. Materials 2019, 12, 1629. https://doi.org/10.3390/ma12101629
Postek E, Sadowski T. Temperature Effects during Impact Testing of a Two-Phase Metal-Ceramic Composite Material. Materials. 2019; 12(10):1629. https://doi.org/10.3390/ma12101629
Chicago/Turabian StylePostek, Eligiusz, and Tomasz Sadowski. 2019. "Temperature Effects during Impact Testing of a Two-Phase Metal-Ceramic Composite Material" Materials 12, no. 10: 1629. https://doi.org/10.3390/ma12101629
APA StylePostek, E., & Sadowski, T. (2019). Temperature Effects during Impact Testing of a Two-Phase Metal-Ceramic Composite Material. Materials, 12(10), 1629. https://doi.org/10.3390/ma12101629