Nanomechanical and Material Properties of Fluorine-Doped Tin Oxide Thin Films Prepared by Ultrasonic Spray Pyrolysis: Effects of F-Doping
Abstract
:1. Introduction
2. Experimental Details
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chantarat, N.; Chen, Y.-W.; Hsu, S.-H.; Lin, C.-C.; Chiang, M.-C.; Chen, S.-Y. Effect of Oxygen on the Microstructural Growth and Physical Properties of Transparent Conducting Fluorine-Doped Tin Oxide Thin Films Fabricated by the Spray Pyrolysis Method. ECS J. Solid State Sci. Technol. 2013, 2, Q131–Q135. [Google Scholar] [CrossRef]
- Zeng, K.; Zhu, F.; Hu, J.; Shen, L.; Zhang, K.; Gong, H. Investigation of Mechanical Properties of Transparent Conducting Oxide Thin Films. Thin Solid Films 2003, 443, 60–65. [Google Scholar] [CrossRef]
- Yang, J.K.; Liang, B.; Zhao, M.J.; Gao, Y.; Zhang, F.C.; Zhao, H.L. Reference of Temperature and Time during Tempering Process for Non-Stoichiometric FTO Films. Sci. Rep. 2015, 5, 15001. [Google Scholar] [CrossRef]
- Hudaya, C.; Jeon, B.J.; Lee, J.K. High Thermal Performance of SnO2:F Thin Transparent Heaters with Scattered Metal Nanodots. ACS Appl. Mater. Interfaces 2015, 7, 57–61. [Google Scholar] [CrossRef]
- Batzill, M.; Diebold, U. The Surface and Materials Science of Tin Oxide. Prog. Surf. Sci. 2005, 79, 47–154. [Google Scholar] [CrossRef]
- Dauzhenka, T.A.; Ksenevich, V.K.; Bashmakov, I.A.; Galibert, J. Origin of Negative Magnetoresistance in Polycrystalline SnO2 Films. Phys. Rev. B 2011, 83, 165309. [Google Scholar] [CrossRef]
- Wu, S.; Yuan, S.; Shi, L.; Zhao, Y.; Fang, J. Preparation, Characterization and Electrical Properties of fluorine-Doped Tin Dioxide Nanocrystals. J. Colloid Interface Sci. 2010, 346, 12–16. [Google Scholar] [CrossRef]
- Gassenbauer, Y.; Klein, A. Electronic and Chemical Properties of Tin-Doped Indium Oxide ( ITO ) Surfaces and ITO/ZnPc Interfaces Studied In-situ by Photoelectron Spectroscopy. J. Phys. Chem. B 2006, 110, 4793–4801. [Google Scholar] [CrossRef]
- Khan, A.F.; Mehmood, M.; Aslam, M.; Ashraf, M. Characteristics of Electron Beam Evaporated Nanocrystalline SnO2 Thin Films Annealed in Air. Appl. Surf. Sci. 2010, 256, 2252–2258. [Google Scholar] [CrossRef]
- Turgut, G. Effect of Ta Doping on the Characteristic Features of Spray-Coated SnO2. Thin Solid Films 2015, 594, 56–66. [Google Scholar] [CrossRef]
- Giraldi, T.R.; Escote, M.T.; Maciel, A.P.; Longo, E.; Leite, E.R.; Varela, J.A. Transport and Sensors Properties of Nanostructured Antimony-Doped Tin Oxide Films. Thin Solid Films 2006, 515, 2678–2685. [Google Scholar] [CrossRef]
- Shi, X.H.; Xu, K.J. Properties of Fluorine-Doped Tin Oxide Films Prepared by an Improved Sol-Gel Process. Mater. Sci. Semicond. Process. 2017, 58, 1–7. [Google Scholar] [CrossRef]
- Memarian, N.; Rozati, S.M.; Elamurugu, E.; Fortunato, E. Characterization of SnO2:F Thin Films Deposited by an Economic Spray Pyrolysis Technique. Phys. Status Solidi C 2010, 7, 2277–2281. [Google Scholar] [CrossRef]
- Benhaoua, A.; Rahal, A.; Benhaoua, B.; Jalaci, M. Effect of Fluorine Doping on the Structural, Optical and Electrical Properties of SnO2 Thin Films Prepared by Spray Ultrasonic. Superlattices Microstruct. 2014, 70, 61–69. [Google Scholar] [CrossRef]
- Gao, Q.; Jiang, H.; Li, M.; Lu, P.; Lai, X.; Li, X.; Liu, Y.; Song, C.; Han, G. Improved Mechanical Properties of SnO2:F Thin Film by Structural Modification. Ceram. Int. 2014, 40, 2557–2564. [Google Scholar] [CrossRef]
- Fang, T.-H.; Chang, W.-J. Nanomechanical Characteristics of SnO2:F Thin Films Deposited by Chemical Vapor Deposition. Appl. Surf. Sci. 2005, 252, 1863–1869. [Google Scholar] [CrossRef]
- Aouaj, M.A.; Diaz, R.; Belayachi, A.; Rueda, F.; Abd-Lefdil, M. Comparative Study of ITO and FTO Thin Films Grown by Spray Pyrolysis. Mater. Res. Bull. 2009, 44, 1458–1461. [Google Scholar] [CrossRef]
- Purushothaman, K.K.; Dhanashankar, M.; Muralidharan, G. Preparation and Characterization of F Doped SnO2 Films and Electrochromic Properties of FTO/NiO Films. Curr. Appl. Phys. 2009, 9, 67–72. [Google Scholar] [CrossRef]
- Bilgin, V.; Akyuz, I.; Ketenci, E.; Kose, S.; Atay, F. Electrical, Structural and Surface Properties of Fluorine Doped Tin Oxide Films. Appl. Surf. Sci. 2010, 256, 6586–6591. [Google Scholar] [CrossRef]
- Bao, L.; Xu, Z.-H.; Li, R.; Li, X. Catalyst-Free Synthesis and Structural and Mechanical Characterization of Single Crystalline Ca2B2O5.H2O Nanobelts and Stacking Faulted Ca2B2O5 Nanogrooves. Nano Lett. 2010, 10, 255–262. [Google Scholar] [CrossRef]
- Jian, S.-R.; Sung, T.-H.; Huang, J.C.; Juang, J.-Y. Deformation Behaviors of InP Pillars under Uniaxial Compression. Appl. Phys. Lett. 2012, 101, 151905. [Google Scholar] [CrossRef]
- Jian, S.-R.; Juang, J.-Y.; Luo, C.W.; Ku, S.-A.; Wu, K.-H. Nanomechanical Properties of GaSe Thin Films Deposited on Si(111) Substrates by Pulsed Laser Deposition. J. Alloys Compd. 2012, 542, 124–127. [Google Scholar] [CrossRef]
- Wang, Y.X.; Zhang, S. Toward Hard yet tough Ceramic Coatings. Surf. Coat. Technol. 2014, 258, 1–16. [Google Scholar] [CrossRef]
- Jian, S.-R.; Tseng, Y.-C. Nanomechanical Characteristics and Deformation Behaviors of ZnSe Thin Films by Nanoindentation. Sci. Adv. Mater. 2014, 6, 617–622. [Google Scholar] [CrossRef]
- Jian, S.-R.; Tasi, C.-H.; Huang, S.-Y.; Luo, C.W. Nanoindentation Pop-In Effects of Bi2Te3 Thermoelectric Thin Films. J. Alloys Compd. 2015, 622, 601–605. [Google Scholar] [CrossRef]
- Ozmetin, A.E.; Sahin, O.; Ongun, E.; Kuru, M. Mechanical Characterization of MgB2 Thin Films Using Nanoindentation Technique. J. Alloys Compd. 2015, 619, 262–266. [Google Scholar] [CrossRef]
- Lai, H.-D.; Jian, S.-R.; Tuyen, L.T.C.; Le, P.H.; Luo, C.W.; Juang, J.-Y. Nanoindentation of Bi2Se3 Thin Films. Micromachines 2018, 9, 518. [Google Scholar] [CrossRef]
- Chiu, Y.-J.; Jian, S.-R.; Liu, T.-J.; Le, P.H.; Juang, J.-Y. Localized Deformation and Fracture Behaviors in InP Single Crystals by Indentation. Micromachines 2018, 9, 611. [Google Scholar] [CrossRef]
- Le, P.H.; Chiu, S.-P.; Jian, S.-R.; Luo, C.W.; Lin, J.-Y.; Lin, J.-J.; Wu, K.H.; Gospodinov, M. Nanomechanical, Structural, and Transport Properties of Bi3Se2Te Thin Films. J. Alloys Compd. 2016, 679, 350–357. [Google Scholar] [CrossRef]
- Jian, S.-R.; Le, P.H.; Luo, C.-W.; Juang, J.-Y.; Wu, K.-H.; Lee, J.-W. Nanomechanical Properties and Fracture Behaviors of Bi3Se2Te Thin Films by Nanoindentation. Sci. Adv. Mater. 2017, 9, 1877–1881. [Google Scholar] [CrossRef]
- Le, P.H.; Luo, C.W.; Jian, S.-R.; Lin, T.-C.; Yang, P.-F. Nanomechanical Properties and Fracture Toughness of Bi3Se2Te Thin Films Grown Using Pulsed Laser Deposition. Mater. Chem. Phys. 2016, 182, 72–76. [Google Scholar] [CrossRef]
- Jian, S.-R.; Le, P.H.; Luo, C.W.; Juang, J.-Y. Nanomechanical and Wettability Properties of Bi2Te3 Thin Films: Effects of Post-Annealing. J. Appl. Phys. 2017, 121, 175302. [Google Scholar] [CrossRef]
- Li, X.; Bhushan, B. A Review of Nanoindentation Continuous Stiffness Measurement Technique and Its Applications. Mater. Charact. 2002, 48, 11–36. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- He, Y.; Li, D.; Chen, J.; Shao, Y.; Xian, J.; Zheng, X.; Wang, P. Sn3O4: A Novel Heterovalent-Tin Photocatalyst with Hierarchical 3D Nanostructures under Visible Light. RSC Adv. 2014, 4, 1266–1269. [Google Scholar] [CrossRef]
- Banyamin, Z.Y.; Kelly, P.J.; West, G.; Boardman, J. Electrical and Optical Properties of Fluorine Doped Tin Oxide Thin Films Prepared by Magnetron Sputtering. Coatings 2014, 4, 732–746. [Google Scholar] [CrossRef]
- Elangovan, E.; Ramamurthi, K. Studies on Micro-Structural and Electrical Properties of Spray-Deposited Fluorine-Doped Tin Oxide Thin Films from Low-Cost Precursor. Thin Solid Films 2005, 476, 231–236. [Google Scholar] [CrossRef]
- Kim, B.H.; Staller, C.M.; Cho, S.H.; Heo, S.; Garrison, C.E.; Kim, J.; Milliron, D.J. High Mobility in Nanocrystal-Based Transparent Conducting Oxide Thin Films. ACS Nano 2018, 12, 3200–3208. [Google Scholar] [CrossRef]
- Li, X.; Gao, H.; Murphy, C.J.; Caswell, K.K. Nanoindentation of Silver Nanowires. Nano Lett. 2003, 3, 1495–1498. [Google Scholar] [CrossRef]
- Sneddon, I.N. The Relation between Load and Penetration in the Axisymmetric Boussinesq Problem for a Punch of Arbitrary Profile. Int. J. Eng. Sci. 1965, 3, 47–57. [Google Scholar] [CrossRef]
- Chuang, C.T.; Chao, C.K.; Chang, R.C.; Chu, K.Y. Effects of Internal Stresses on the Mechanical Properties of Deposition Thin Films. J. Mater. Process. Technol. 2008, 201, 770–774. [Google Scholar] [CrossRef]
- Tasi, C.-H.; Tseng, Y.-C.; Jian, S.-R.; Liao, Y.-Y.; Lin, C.-M.; Yang, P.-F.; Chen, D.-L.; Chen, H.-J.; Luo, C.-W.; Juang, J.-Y. Nanomechanical Properties of Bi2Te3 Thin Films by Nanoindentation. J. Alloys Compd. 2015, 619, 834–838. [Google Scholar] [CrossRef]
- Villegas, E.A.; Parra, R.; Ramajo, L. Integral Nanoindentation Evaluation of TiO2, SnO2, and ZnO Thin Films Deposited Via Spray-Pyrolysis on Glass Substrates. J. Mater. Sci. Mater. Electron. 2019, 30, 1360–1365. [Google Scholar] [CrossRef]
- Zhang, S.; Sun, D.; Fu, Y.; Du, H. Recent Advances of Superhard Nanocomposite Coatings: A Review. Surf. Coat. Technol. 2003, 167, 113–119. [Google Scholar] [CrossRef]
- Schiøtz, J.; Vegge, T.; Di Tolla, F.D.; Jacobsen, K.W. Atomic-Scale Simulations of the Mechanical Deformation of Nanocrystalline Metals. Phys. Rev. B 1999, 60, 11971–11983. [Google Scholar] [CrossRef]
- Swygenhoven, H.V. Grain Boundaries and Dislocations. Science 2002, 296, 66–67. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Stevens, R. Porosity-Dependence of Elastic Moduli and Hardness of 3Y-TZP Ceramics. Ceram. Int. 1999, 25, 281–286. [Google Scholar] [CrossRef]
- Thornton, J.A. Influence of Apparatus Geometry and Deposition Conditions on the Structure and Topography of Thick Sputtered Coatings. J. Vac. Sci. Technol. 1974, 11, 666–670. [Google Scholar] [CrossRef]
- Le, P.H.; Liao, C.-N.; Luo, C.W.; Leu, J. Thermoelectric Properties of Nanostructured Bismuth-Telluride Thin Films Grown Using Pulsed Laser Deposition. J. Alloy. Compd. 2014, 615, 546–552. [Google Scholar] [CrossRef]
- Ni, W.; Cheng, Y.-T.; Lukitsch, M.; Weiner, A.M.; Lev, L.C.; Grummon, D.S. Novel Layered Tribological Coatings Using a Superelastic NiTi Interlayer. Wear 2005, 259, 842–848. [Google Scholar] [CrossRef]
- Battu, A.K.; Manandhar, S.; Ramana, C.V. Molybdenum Incorporation Induced Enhancement in the Mechanical Properties of Gallium Oxide Films. Adv. Mater. Interfaces 2017, 4, 1700378. [Google Scholar] [CrossRef]
- Musil, J. Hard Nanocomposite Coatings: Thermal Stability, Oxidation Resistance and Toughness. Surf. Coat. Technol. 2012, 207, 50–65. [Google Scholar] [CrossRef]
Sample | Preparation Technique | % F Dopant | ρ (mΩcm) | μ (cm2/Vs) | n ×1020 cm−3 | L (nm) | D (nm) | T (%) (λ = 550 nm) | Ref. |
---|---|---|---|---|---|---|---|---|---|
FTO | USP | 5.1 | 1.0 | 4.5 | 13 | 1 | 42.7 | 86.5 | This study |
FTO | USP | - | 0.7 | 7.7 | 11.6 | 1.7 | 35.1 | 86.9 | This study |
FTO | USP | 2.5 | 0.6 | 33.5 | 3.1 | - | 35 | ~68 | [17] |
FTO | USP | 1 | 6.5 | - | - | - | - | - | [19] |
FTO | USP | 5 | 1.6 | 4.8 | 8.4 | 68 | [13] | ||
FTO | SPD | 7.5 | 1.5 | 21.9 | 1.9 | 2.5 | 25~33 | - | [18] |
FTO | APCVD | ~4.8 | 0.53 | 23.8 | 5.0 | 3.8 | 20.1 | 84 | [3] |
F/Sn | D (nm) | H (GPa) | Ef (GPa) | H/Ef | (GPa) |
---|---|---|---|---|---|
0 | 29.6 | 5.6 ± 0.2 | 95.2 ± 7.1 | 0.059 | 0.019 |
0.1 | 33.3 | 6.9 ± 0.3 | 115.1 ± 8.7 | 0.060 | 0.025 |
0.5 | 42.7 | 12.3 ± 0.4 | 131.7 ± 8.0 | 0.093 | 0.107 |
1 | 35.1 | 10.2 ± 0.3 | 120.6 ± 7.6 | 0.085 | 0.073 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tuyen, L.T.C.; Jian, S.-R.; Tien, N.T.; Le, P.H. Nanomechanical and Material Properties of Fluorine-Doped Tin Oxide Thin Films Prepared by Ultrasonic Spray Pyrolysis: Effects of F-Doping. Materials 2019, 12, 1665. https://doi.org/10.3390/ma12101665
Tuyen LTC, Jian S-R, Tien NT, Le PH. Nanomechanical and Material Properties of Fluorine-Doped Tin Oxide Thin Films Prepared by Ultrasonic Spray Pyrolysis: Effects of F-Doping. Materials. 2019; 12(10):1665. https://doi.org/10.3390/ma12101665
Chicago/Turabian StyleTuyen, Le Thi Cam, Sheng-Rui Jian, Nguyen Thanh Tien, and Phuoc Huu Le. 2019. "Nanomechanical and Material Properties of Fluorine-Doped Tin Oxide Thin Films Prepared by Ultrasonic Spray Pyrolysis: Effects of F-Doping" Materials 12, no. 10: 1665. https://doi.org/10.3390/ma12101665
APA StyleTuyen, L. T. C., Jian, S. -R., Tien, N. T., & Le, P. H. (2019). Nanomechanical and Material Properties of Fluorine-Doped Tin Oxide Thin Films Prepared by Ultrasonic Spray Pyrolysis: Effects of F-Doping. Materials, 12(10), 1665. https://doi.org/10.3390/ma12101665