Mesostructural Modeling of Dynamic Modulus and Phase Angle Master Curves of Rubber Modified Asphalt Mixture
Abstract
:1. Introduction
2. Theoretical Background
2.1. Continuous Spectrum Model for an Asphalt Mortar and Asphalt Mixture
2.2. Determination of the Discrete Spectrum
- ;
- ;
- .
3. Experiment and Parameter Acquisition
3.1. Dynamic Modulus Tests of the Asphalt Mortar and Asphalt Mixture
3.2. Parameter Acquisition
4. Construction of the Finite Element Model
4.1. Mesostructure of the Asphalt Mixture
4.2. Finite Element Model
5. Simulation Results and Analysis
5.1. Simulations of Dynamic Modulus and Phase Angle Master Curves
5.2. Influence of Elastic Modulus of Aggregates on Master Curves
5.3. Improved Prediction of the Phase Angle Master Curve
6. Conclusions
- (1)
- The 2S2P1D model originally proposed for the asphalt binder and asphalt mixture was used to characterize the viscoelastic mechanical response of the rubber modified asphalt mortar. The fitting results proved that the 2S2P1D model could accurately describe the dynamic modulus and phase angle master curves of rubber modified asphalt mortar. Furthermore, the continuous spectrum function of the 2S2P1D model was efficiently converted into a discrete spectrum for finite element implementation. The simulation results of the mesostructured-based finite element model showed that the discrete spectrum model could precisely predict the dynamic modulus of asphalt mixture under a large frequency range.
- (2)
- The elastic modulus of aggregates demonstrated a stronger correlation with the phase angle of an asphalt mixture than the dynamic modulus. As the frequency increased, the effect on the dynamic modulus monotonically increased while the effect of the phase angle had fluctuated and reached a peak at 1 Rad/s.
- (3)
- The test data of the phase angle indicated that the rubber modified asphalt mortar exhibited mechanical behavior of a viscoelastic liquid while the asphalt mixture was known as a viscoelastic solid. Then the mesostructure-based finite element simulation results proved that the prediction of the phase angle master curve strongly correlated with the mechanical behavior of the asphalt mortar. Therefore, a significant difference between test data and simulation results was observed at low frequency when directly using model parameters of the asphalt mortar. This difference was ignored by the existing studies in which simulations were conducted only under a small frequency range.
- (4)
- The equilibrium modulus was found to have a great influence on the phase angle master curve through parameter sensitivity analysis. Further, simulation results proved that by replacing the equilibrium modulus of asphalt mortar with that of the asphalt mixture, the prediction of the phase angle could be significantly improved while the prediction of dynamic modulus was still acceptable.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
(s) | (MPa) | (s) | (MPa) | (s) | (MPa) | (s) | (MPa) |
---|---|---|---|---|---|---|---|
−20.00 | 14.05 | −13.05 | 354.98 | −6.10 | 4570.31 | 0.85 | 1451.90 |
−19.57 | 17.86 | −12.62 | 431.15 | −5.67 | 4894.69 | 1.28 | 1115.67 |
−19.13 | 21.83 | −12.18 | 522.85 | −5.23 | 5139.13 | 1.71 | 816.32 |
−18.70 | 26.69 | −11.75 | 632.90 | −4.80 | 5284.67 | 2.15 | 568.91 |
−18.26 | 32.62 | −11.31 | 764.38 | −4.37 | 5320.12 | 2.58 | 379.64 |
−17.83 | 39.87 | −10.88 | 920.67 | −3.93 | 5244.20 | 3.02 | 244.40 |
−17.39 | 48.73 | −10.45 | 1105.24 | −3.50 | 5065.62 | 3.45 | 152.75 |
−16.96 | 59.53 | −10.01 | 1321.51 | −3.06 | 4801.28 | 3.89 | 92.83 |
−16.53 | 72.73 | −9.58 | 1572.51 | −2.63 | 4472.97 | 4.32 | 54.41 |
−16.09 | 88.82 | −9.14 | 1860.37 | −2.19 | 4103.59 | 4.75 | 29.95 |
−15.66 | 108.44 | −8.71 | 2185.74 | −1.76 | 3713.66 | 5.19 | 14.67 |
−15.22 | 132.34 | −8.27 | 2546.96 | −1.33 | 3318.95 | 5.62 | 5.97 |
−14.79 | 161.44 | −7.84 | 2939.19 | −0.89 | 2929.14 | 6.06 | 1.96 |
−14.35 | 196.82 | −7.41 | 3353.53 | −0.46 | 2547.93 | 6.49 | 0.54 |
−13.92 | 239.80 | −6.97 | 3776.39 | −0.02 | 2174.79 | 6.93 | 0.13 |
−13.49 | 291.91 | −6.54 | 4189.42 | 0.41 | 1808.48 | 7.36 | 0.03 |
References
- Schapery, R.A. A simple collocation method for fitting viscoelastic models to experimental data. Calif. Inst. Technol. 1962. Available online: http://resolver.caltech.edu/CaltechAUTHORS:20141114-115330896 (accessed on 6 December 2018).
- Ferry, J.D. Viscoelastic Properties of Polymers; John Wiley Sons: Hoboken, NJ, USA, 1980. [Google Scholar]
- Tschoegl, N.W. The Phenomenological Theory of Linear Viscoelastic Behavior: An Introduction; Springer Science Business Media: Berlin, Germany, 1989. [Google Scholar]
- Ma, T.; Zhang, D.; Zhang, Y.; Zhao, Y.; Huang, X. Effect of air voids on the high-temperature creep behavior of asphalt mixture based on three-dimensional discrete element modeling. Mater. Des. 2016, 89, 304–313. [Google Scholar] [CrossRef]
- Ma, T.; Zhang, D.; Zhang, Y.; Wang, S.; Huang, X. Simulation of wheel tracking test for asphalt mixture using discrete element modelling. Road Mater. Pavement Des. 2018, 19, 367–384. [Google Scholar] [CrossRef]
- Peng, C.; Feng, J.; Zhou, C.; Decheng, F. Investigation on statistical characteristics of asphalt concrete dynamic moduli with random aggregate distribution model. Constr. Build. Mater. 2017, 148, 723–733. [Google Scholar]
- Ma, T.; Wang, H.; Zhang, D.; Zhang, Y. Heterogeneity effect of mechanical property on creep behavior of asphalt mixture based on micromechanical modeling and virtual creep test. Mater. Des. 2017, 104, 49–59. [Google Scholar]
- Ma, T.; Wang, H.; He, L.; Zhao, Y.; Huang, X.; Chen, J. Property characterization of asphalt binders and mixtures modified by different crumb rubbers. J. Mater. Civ. Eng. 2017, 29, 04017036. [Google Scholar] [CrossRef]
- Ding, X.; Ma, T.; Huang, X. Discrete-element contour-filling modeling method for micromechanical and macromechanical analysis of aggregate skeleton of asphalt mixture. J. Transp. Eng. Part B Pavements 2018, 145, 04018056. [Google Scholar] [CrossRef]
- Ding, X.; Chen, L.; Ma, T.; Ma, H.; Gu, L.; Chen, T.; Ma, Y. Laboratory investigation of the recycled asphalt concrete with stable crumb rubber asphalt binder. Constr. Build. Mater. 2019, 203, 552–557. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, X.; Onifade, I.; Huang, X.; Lytton, R.L.; Birgisson, B. Mechanical evaluation of aggregate gradation to characterize load carrying capacity and rutting resistance of asphalt mixtures. Constr. Build. Mater. 2019, 205, 499–510. [Google Scholar] [CrossRef]
- Tang, F.; Zhu, S.; Xu, G.; Ma, T.; Kong, L.; Kong, L. Influence by chemical constitution of aggregates on demulsification speed of emulsified asphalt based on UV-spectral analysis. Constr. Build. Mater. 2019, 212, 102–108. [Google Scholar] [CrossRef]
- Jiang, J.; Ni, F.; Dong, Q.; Yao, L.; Ma, X. Investigation of the internal structure change of two-layer asphalt mixtures during the wheel tracking test based on 2D image analysis. Constr. Build. Mater. 2019, 209, 66–76. [Google Scholar] [CrossRef]
- Cai, X.; Zhang, H.; Zhang, J.; Chen, X.; Yang, J.; Hong, J. Investigation on reinforcing mechanisms of semi-flexible pavement material through micromechanical model. Constr. Build. Mater. 2019, 198, 732–741. [Google Scholar] [CrossRef]
- You, Z.; Buttlar, W.G. Discrete Element Modeling to Predict the Modulus of Asphalt Concrete Mixtures. J. Mater. Civ. Eng. 2004, 16, 140–146. [Google Scholar] [CrossRef]
- Dai, Q.; You, Z. Micromechanical finite element framework for predicting viscoelastic properties of asphalt mixtures. Mater. Struct. 2008, 41, 1025–1037. [Google Scholar] [CrossRef]
- Dai, Q.; Sadd, M.H.; Parameswaran, V.; Shukla, A. Prediction of damage behaviors in asphalt materials using a micromechanical finite-element model and image analysis. J. Eng. Mech. 2005, 131, 668–677. [Google Scholar] [CrossRef]
- Dai, Q. Prediction of dynamic modulus and phase angle of stone-based composites using a micromechanical finite-element approach. J. Mater. Civ. Eng. 2010, 22, 618–627. [Google Scholar] [CrossRef]
- Ying, H.; Elseifi, M.A.; Mohammad, L.N.; Hassan, M.M. Heterogeneous finite-element modeling of the dynamic complex modulus test of asphalt mixture using x-ray computed tomography. J. Mater. Civ. Eng. 2013, 26, 04014052. [Google Scholar] [CrossRef]
- Liu, Y.; You, Z. Discrete-element modeling: Impacts of aggregate sphericity, orientation, and angularity on creep stiffness of idealized asphalt mixtures. J. Eng. Mech.-Asce 2011, 137, 294–303. [Google Scholar] [CrossRef]
- Olard, F.; Di Benedetto, H. General “2S2P1D” model and relation between the linear viscoelastic behaviours of bituminous binders and mixes. Road Mater. Pavement 2003, 4, 185–224. [Google Scholar]
- Kuna, K.; Gottumukkala, B. Viscoelastic characterization of cold recycled bituminous mixtures. Constr. Build. Mater. 2019, 199, 298–306. [Google Scholar] [CrossRef]
- Blasl, A.; Khalili, M.; Falla, G.C.; Oeser, M.; Liu, P.; Wellner, F. Rheological characterisation and modelling of bitumen containing reclaimed components. Int. J. Pavement Eng. 2019, 20, 638–648. [Google Scholar] [CrossRef]
- Nobakht, M.; Sakhaeifar, M.S. Dynamic modulus and phase angle prediction of laboratory aged asphalt mixtures. Constr. Build. Mater. 2018, 190, 740–751. [Google Scholar] [CrossRef]
- Yin, Y.; Huang, W.; Lv, J.; Ma, X.; Yan, J. Unified construction of dynamic rheological master curve of asphalts and asphalt mixtures. Int. J. Civ. Eng. 2018, 16, 1057–1067. [Google Scholar] [CrossRef]
- De Araújo, P.C.; Soares, J.B.; Holanda, Á.S.; Parente, E.; Evangelista, F. Dynamic viscoelastic analysis of asphalt pavements using a finite element formulation. Road Mater. Pavement Des. 2010, 11, 409–433. [Google Scholar] [CrossRef]
- Honerkamp, J.; Weese, J. Determination of the relaxation spectrum by a regularization method. Macromolecules 1989, 22, 4372–4377. [Google Scholar] [CrossRef]
- Kaschta, J. On the calculation of discrete retardation and relaxation spectra. In Theoretical and Applied Rheology; Elsevier: Amsterdam, The Netherlands, 1992; p. 155. [Google Scholar]
- Emri, I.; Tschoegl, N.W. Generating line spectra from experimental responses. Rheol. Acta 1997, 36, 303–306. [Google Scholar] [CrossRef]
- Ramkumar, D.; Caruthers, J.M.; Mavridis, H.; Shroff, R. Computation of the linear viscoelastic relaxation spectrum from experimental data. J. Appl. Polym. Sci. 1997, 64, 2177–2189. [Google Scholar] [CrossRef]
- Park, S.W.; Kim, Y.R. Fitting Prony-series viscoelastic models with power-law presmoothing. J. Mater. Civ. Eng. 2001, 13, 26–32. [Google Scholar] [CrossRef]
- Zeng, M.; Bahia, H.U.; Zhai, H.; Anderson, M.R.; Turner, P. Rheological modeling of modified asphalt binders and mixtures. Asph. Paving Technol. Assoc. Asph. Paving Technol.-Proc. Tech. Sess. 2001, 70, 403–441. [Google Scholar]
- Christensen, D.W., Jr.; Anderson, D.A. Interpretation of dynamic mechanical test data for paving grade asphalt. Asph. Paving Technol. Assoc. Asph. Paving Technol.-Proc. Tech. Sess. 1992, 61, 67–116. [Google Scholar]
- Havriliak, S.; Negami, S. A complex plane analysis of α—Dispersions in some polymer systems. J. Polym. Sci. Part C Polym. Symp. 1966, 14, 99–117. [Google Scholar] [CrossRef]
- Katicha, S.W.; Flintsch, G.W. Fractional viscoelastic models: Master curve construction, interconversion, and numerical approximation. Rheol. Acta 2012, 51, 675–689. [Google Scholar] [CrossRef]
- Adolfsson, K.; Enelund, M.; Olsson, P. On the fractional order model of viscoelasticity. Mech. Time-Depend. Mater. 2005, 9, 15–34. [Google Scholar] [CrossRef]
- JTG E20-2011. Standard Test Methods of Bitumen and Bitumenous Mixtures for Highway Engineering; Ministry of Transport of the People’s Republic of China: Beijing, China, 2011. (In Chinese)
- Tehrani, F.F.; Absi, J.; Allou, F.; Petit, C. Micromechanical modelling of bituminous materials’ complex modulus at different length scales. Int. J. Pavement Eng. 2018, 19, 685–696. [Google Scholar] [CrossRef]
Sieving Size (mm) | ≥4.75 | 2.36 | 1.18 | 0.6 | 0.3 | 0.15 | 0.075 |
---|---|---|---|---|---|---|---|
Specific surface area (m2/kg) | 0.41 | 0.82 | 1.64 | 2.87 | 6.14 | 12.29 | 32.77 |
Properties | Coarse Aggregates | Fine Aggregates | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Sieving size (mm) | 16 | 13.2 | 9.5 | 4.75 | 2.36 | 1.18 | 0.6 | 0.3 | 0.15 | 0.075 |
Passing Ratio (%) | 100.0 | 99.8 | 77.0 | 55.3 | 31.4 | 23.5 | 16.7 | 12.0 | 9.5 | 6.6 |
Specific surface area (m2/kg) | 0.41 | 0.41 | 0.41 | 0.41 | 0.82 | 1.64 | 2.87 | 6.14 | 12.29 | 32.77 |
Surface area (m2) | 0.00 | 9.34 | 8.88 | 9.81 | 6.49 | 11.10 | 13.43 | 15.47 | 35.40 | 217.59 |
Aggregate weight (kg) | 68.36 | 31.41 | ||||||||
Surface area (m2) | 28.03 | 299.49 | ||||||||
Proportion of surface area | 0.09 | 0.91 | ||||||||
Coated asphalt (kg) | 0.43 | 4.57 | ||||||||
Asphalt content (%) | 12.71 |
Materials | Ee (MPa) | Eg (MPa) | δ | k | h | β | τref | C1 | C2 | Tref (°C) | Relative Error |
---|---|---|---|---|---|---|---|---|---|---|---|
Asphalt mixture | 127.33 | 53,993.61 | 2.62 | 0.08 | 0.45 | 57,370.2 | 0.07 | 82.04 | 804.57 | 0 | 4.96% |
Asphalt mortar | 0.00 | 40,166.80 | 5.45 | 0.20 | 0.52 | 1247.25 | 0.13 | 83.58 | 712.76 | 0 | 2.02% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, L.; Chen, L.; Zhang, W.; Ma, H.; Ma, T. Mesostructural Modeling of Dynamic Modulus and Phase Angle Master Curves of Rubber Modified Asphalt Mixture. Materials 2019, 12, 1667. https://doi.org/10.3390/ma12101667
Gu L, Chen L, Zhang W, Ma H, Ma T. Mesostructural Modeling of Dynamic Modulus and Phase Angle Master Curves of Rubber Modified Asphalt Mixture. Materials. 2019; 12(10):1667. https://doi.org/10.3390/ma12101667
Chicago/Turabian StyleGu, Linhao, Luchuan Chen, Weiguang Zhang, Haixia Ma, and Tao Ma. 2019. "Mesostructural Modeling of Dynamic Modulus and Phase Angle Master Curves of Rubber Modified Asphalt Mixture" Materials 12, no. 10: 1667. https://doi.org/10.3390/ma12101667
APA StyleGu, L., Chen, L., Zhang, W., Ma, H., & Ma, T. (2019). Mesostructural Modeling of Dynamic Modulus and Phase Angle Master Curves of Rubber Modified Asphalt Mixture. Materials, 12(10), 1667. https://doi.org/10.3390/ma12101667