Influence of Nature Support on Methane and CO2 Conversion in a Dry Reforming Reaction over Nickel-Supported Catalysts
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Fresh Catalysts
2.1.1. Surface Characterization
2.1.2. X-ray Diffraction (XRD)
2.1.3. H2-Temperature Programmed Reduction (H2-TPR)
2.1.4. CO2-Temperature Programmed Desorption (CO2-TPD)
2.2. Catalyst Performance
2.3. Spent Catalyst Characterization
2.3.1. Temperature-Programmed Oxidation (TPO)
2.3.2. Thermo-Gravimetric Analysis (TGA)
2.4. Scanning Electron Microscope (SEM)
3. Materials and Methods
3.1. Catalyst Preparation
3.2. Characterization
3.3. Catalyst Activity
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Caballero, A.; Perez, P.J. Methane as raw material in synthetic chemistry: The final frontier. Chem. Soc. Rev. 2013, 42, 8809–8820. [Google Scholar] [CrossRef]
- Olsbye, U. Single-pass catalytic conversion of syngas into olefins via methanol. Angew. Chem. Int. Ed. 2016, 55, 7294–7295. [Google Scholar] [CrossRef]
- Venvik, H.J.; Yang, J. Catalysis in microstructured reactors: Short review on small-scale syngas production and further conversion into methanol, DME and Fischer-Tropsch products. Catal. Today 2017, 285, 135–146. [Google Scholar] [CrossRef]
- Ali, K.A.; Abdullah, A.Z.; Mohamed, A.R. Recent development in catalytic technologies for methanol synthesis from renewable sources: A critical review. Renew. Sustain. Energy Rev. 2015, 44, 508–518. [Google Scholar] [CrossRef]
- Hu, J.; Yu, F.; Lu, Y. Application of Fischer-Tropsch synthesis in biomass to liquid conversion. Catalysts 2012, 2, 303–326. [Google Scholar] [CrossRef]
- Liu, Q.G.; Fangna, L.; Xiaopeng, L.; Youjun, L.; Huifang, Z.; Ziyi, X.; Guangwen, S.; Fabing, S. Enhanced catalytic performances of Ni/Al2O3 catalyst via addition of V2O3 for CO methanation. Appl. Catal. A 2014, 488, 37–47. [Google Scholar]
- Hu, Y.; Ruckenstein, E. Binary MgO-based solid solution catalysts for methane conversion to syngas. Catal. Rev. 2002, 44, 423–453. [Google Scholar] [CrossRef]
- Moghaddam, S.V.; Rezaei, M.; Meshkani, F.; Daroughegi, R. Carbon dioxide methanation over Ni-M/Al2O3 (M: Fe, CO, Zr, La and Cu) Catalysts synthesized using the one-pot sol-gel synthesis method. Int. J. Hydrogen Energy 2018, 43, 16522–16533. [Google Scholar] [CrossRef]
- Xu, L.; Song, H.; Chou, L. One-Pot synthesis of ordered mesoporous NiO-CaO-Al2O3 composite oxides for catalyzing CO2 reforming of CH4. ACS Catal. 2012, 2, 1331–1342. [Google Scholar] [CrossRef]
- Khavarian, M.; Chai, S.P.; Mohamed, A.R. The effects of process parameters on carbon dioxide rreforming of methane over Co-Mo-MgO/MWCNTs nanocomposite catalysts. Fuel 2015, 158, 129–38. [Google Scholar] [CrossRef]
- Jaiswar, V.K.; Katheria, S.; Deo, G.; Kunzru, D. Effect of Pt doping on activity and stability of Ni/MgAl2O4 catalyst for steam reforming of methane at ambient and high pressure condition. Int. J. Hydrogen Energy 2017, 42, 18968–18976. [Google Scholar] [CrossRef]
- Bitter, J.H.; Seshan, K.; Lercher, J.A. Mono and bifunctional pathways of CO2/CH4 reforming over Pt and Rh based catalysts. J. Catal. 1998, 176, 93–101. [Google Scholar] [CrossRef]
- Li, X.; Li, D.; Tian, H.; Zeng, L.; Zhao, Z.J.; Gong, J. Dry reforming of methane over Ni/La2O3 nanorod catalysts with stabilized Ni nanoparticles. Appl. Catal. B Environ. 2017, 202, 683–694. [Google Scholar] [CrossRef]
- Abdullah, B.; Ghani, N.A.A.; Vo, D.V.N. Recent advances in dry reforming of methane over Ni-based catalysts. J. Clean Prod. 2017, 162, 170–185. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Tang, H.; Gong, D.; Ma, Z.; Liu, Y. Loading Ni/La2O3 on SiO2 for CO methanation from syngas. Catal. Today 2017, 297, 298–307. [Google Scholar] [CrossRef]
- Lovell, E.C.; Fuller, A.; Scott, J.; Amal, R. Enhancing Ni-SiO2 catalysts for the carbon dioxide reforming of methane: Reduction-oxidation-reduction pre-treatment. Appl. Catal. B Environ 2016, 199, 155–165. [Google Scholar] [CrossRef]
- Rezaei, M.; Alavi, S.M.; Sahebdelfar, S.; Yan, Z.F. Syngas production by methane reforming with carbon dioxide on noble metal catalysts. J. Nat. Gas Chem. 2006, 15, 327–334. [Google Scholar] [CrossRef]
- Li, D.; Nakagawa, Y.; Tomishige, K. Methane reforming to synthesis gas over Ni catalysts modified with noble metals. Appl. Catal. A-Gen. 2011, 408, 1–24. [Google Scholar] [CrossRef]
- Wang, F.; Xu, L.; Zhang, J.; Zhao, Y.; Li, H.; Li, H.X.; Wu, K.; Xu, Q.G.; Chen, W. Tuning the metal-support interaction in catalysts for highly efficient methane dry reforming reaction. Appl. Catal. B Environ. 2016, 180, 511–520. [Google Scholar] [CrossRef]
- Zhang, L.M.; Li, L.; Li, J.L.; Zhang, Y.H.; Hu, J.C. Carbon dioxide reforming of methane over nickel catalyst supported on MgO (111) nanosheets. Top. Catal. 2014, 57, 619–626. [Google Scholar] [CrossRef]
- Sudarsanam, P.; Hillary, B.; Deepa, D.K.; Amin, M.H.; Mallesham, B.; Reddy, B.M.; Bhargava, S.K. Highly efficient cerium dioxide nanocube-based catalysts for low temperature diesel soot oxidation: The cooperative effect of cerium- and cobalt-oxides. Catal. Sci. Technol. 2015, 5, 3496–3500. [Google Scholar] [CrossRef]
- Srivastava, R.; Srinivas, D.; Ratnasamy, P. CO2 activation and synthesis of cyclic carbonates and alkyl/aryl carbamates over adenine-modified Ti-SBA-15 solid catalysts. J. Catal. 2005, 233, 1–15. [Google Scholar] [CrossRef]
- Kalapathy, U.; Proctor, A.; Schultz, J. A simple method for the production of pure silica from rice hull ash. Bioresour. Technol. 2000, 73, 257–262. [Google Scholar] [CrossRef]
- Yu, J.; Ni, Y.; Zhai, M. Simple solution-combustion synthesis of Ni-NiO@C nanocomposites with highly electrocatalytic activity for methanol oxidation. J. Phys. Chem. Solid. 2018, 112, 119–126. [Google Scholar] [CrossRef]
- Kelekanjeri, V.S.K.G.; Carter, W.B.; Hampikian, J.M. Deposition of α-alumina via combustion chemical vapor deposition. Thin Solid Films 2006, 551, 1905–1911. [Google Scholar] [CrossRef]
- Sun, G.B.; Hidajat, K.; Wu, X.S.; Kawi, S. A crucial role of surface oxygen mobility on nanocrystalline Y2O3 support for oxidative steam reforming of ethanol to hydrogen over Ni/Y2O3 catalysts. Appl. Catal. B Environ. 2008, 81, 303–312. [Google Scholar] [CrossRef]
- Zhu, F.; Zhang, H.; Yan, X.; Yan, J.; Ni, M.; Li, X.; Tu, X. Plasma-catalytic reforming of CO2-rich biogas over Ni/γ-Al2O3 catalysts in a rotating gliding arc reactor. Fuel 2017, 199, 430–437. [Google Scholar] [CrossRef]
- Mei, D.; Ashford, B.; He, Y.-L.; Tu, X. Plasma-catalytic reforming of biogas over supported Ni catalysts in a dielectric barrier discharge reactor: Effect of catalyst supports. Plasma Process. Polym. 2017, 14, 1600076. [Google Scholar] [CrossRef]
- Akbari, E.; Alavi, S.M.; Rezaei, M. Synthesis gas production over highly active and stable nanostructured Ni-MgO-Al2O3 catalysts in dry reforming of methane: effects of Ni contents. Fuel 2017, 194, 171–179. [Google Scholar] [CrossRef]
- Zhang, R.-J.; Xia, G.-F.; Li, M.-F.; Wu, Y.; Nie, H.; Li, D.-D. Effect of support on the performance of Ni-based catalyst in methane dry reforming. J. Fuel Chem. Technol. 2015, 43, 1359–1365. [Google Scholar] [CrossRef]
- Hao, Z.; Zhu, Q.; Jiang, Z.; Hou, B.; Li, H. Characterization of aerogel Ni/Al2O3 catalysts and investigation on their stability for CH4-CO2 reforming in a fluidized bed. Fuel Process. Technol. 2009, 90, 113–121. [Google Scholar] [CrossRef]
- Al-Fatesh, A.S.; Atia, H.; Ibrahim, A.A.; Fakeeha, A.H.; Singh, S.K.; Labhsetwar, N.K.; Shaikh, H.; Qasim, S.O. CO2 reforming of CH4: Effect of Gd as promoter for Ni supported over MCM-41 as catalyst. Renew. Energy 2019, 140, 658–667. [Google Scholar] [CrossRef]
- Yang, W.; Liu, H.; Li, Y.; Wu, H.; He, D. CO2 reforming of methane to syngas over highly-stable Ni/SBA-15 catalysts prepared by P123-assisted method. Int. J. Hydrogen Energy 2016, 41, 1513–1523. [Google Scholar] [CrossRef]
Catalyst | Surface Area (m2/g) | P.V (cm3/g) | P.D (nm) |
---|---|---|---|
5%Ni/Al2O3(SA-5239) | 4 | 0.01 | 11.5 |
5%Ni/Al2O3(SA-6175) | 209 | 0.68 | 11.6 |
5%Ni/SiO2 | 258 | 0.60 | 8.2 |
5%Ni/MCM41 | 583 | 0.64 | 3.7 |
5%Ni/SBA15 | 668 | 0.06 | 6.6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fakeeha, A.H.; Kasim, S.O.; Ibrahim, A.A.; Abasaeed, A.E.; Al-Fatesh, A.S. Influence of Nature Support on Methane and CO2 Conversion in a Dry Reforming Reaction over Nickel-Supported Catalysts. Materials 2019, 12, 1777. https://doi.org/10.3390/ma12111777
Fakeeha AH, Kasim SO, Ibrahim AA, Abasaeed AE, Al-Fatesh AS. Influence of Nature Support on Methane and CO2 Conversion in a Dry Reforming Reaction over Nickel-Supported Catalysts. Materials. 2019; 12(11):1777. https://doi.org/10.3390/ma12111777
Chicago/Turabian StyleFakeeha, Anis Hamza, Samsudeen Olajide Kasim, Ahmed Aidid Ibrahim, Ahmed Elhag Abasaeed, and Ahmed Sadeq Al-Fatesh. 2019. "Influence of Nature Support on Methane and CO2 Conversion in a Dry Reforming Reaction over Nickel-Supported Catalysts" Materials 12, no. 11: 1777. https://doi.org/10.3390/ma12111777
APA StyleFakeeha, A. H., Kasim, S. O., Ibrahim, A. A., Abasaeed, A. E., & Al-Fatesh, A. S. (2019). Influence of Nature Support on Methane and CO2 Conversion in a Dry Reforming Reaction over Nickel-Supported Catalysts. Materials, 12(11), 1777. https://doi.org/10.3390/ma12111777