Mechanically Robust and Repairable Superhydrophobic Zinc Coating via a Fast and Facile Method for Corrosion Resisting
Abstract
:1. Introduction
2. Experimental
2.1. Sample Fabrication
2.2. Characterization
3. Results and Discussion
3.1. Wettability, Surface Morphology, and Surface Chemistry
3.2. Mechanical Durability and Repairability
3.3. Corrosion Resistance
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kendig, M.W.; Buchheit, R.G. Corrosion inhibition of aluminum and aluminum alloys by soluble chromates, chromate coatings, and chromate-free coatings. Corrosion 2003, 59, 379–400. [Google Scholar] [CrossRef]
- Asadi, V.; Danaee, I.; Eskandari, H. The effect of immersion time and immersion temperature on the corrosion behavior of zinc phosphate conversion coatings on carbon steel. Mater. Res. 2015, 18, 706–713. [Google Scholar] [CrossRef]
- Finšgar, M.; Jackson, J. Application of corrosion inhibitors for steels in acidic media for the oil and gas industry: A review. Corros. Sci. 2014, 86, 17–41. [Google Scholar] [CrossRef] [Green Version]
- Marder, A.R. The metallurgy of zinc-coated steel. Prog. Mater. Sci. 2000, 45, 191–271. [Google Scholar] [CrossRef]
- Liu, T.; Chen, S.; Cheng, S.; Tian, J.; Chang, X.; Yin, Y. Corrosion behavior of super-hydrophobic surface on copper in seawater. Electrochim. Acta 2007, 52, 8003–8007. [Google Scholar] [CrossRef]
- Zhang, D.W.; Wang, L.T.; Qian, H.C.; Li, X.G. Superhydrophobic surfaces for corrosion protection: a review of recent progresses and future directions. J. Coat. Technol. Res. 2016, 13, 11–29. [Google Scholar] [CrossRef]
- Boinovich, L.B.; Gnedenkov, S.V.; Alpysbaeva, D.A.; Egorkin, V.S.; Emelyanenko, A.M.; Sinebryukhov, S.L.; Zaretskaya, A.K. Corrosion resistance of composite coatings on low-carbon steel containing hydrophobic and superhydrophobic layers in combination with oxide sublayers. Corros. Sci. 2012, 55, 238–245. [Google Scholar] [CrossRef]
- Boinovich, L.B.; Emelyanenko, A.M.; Modestov, A.D.; Domantovsky, A.G.; Emelyanenko, K.A. Not simply repel water: the diversified nature of corrosion protection by superhydrophobic coatings. Mendeleev Commun. 2017, 27, 254–256. [Google Scholar] [CrossRef]
- Yin, K.; Yang, S.; Dong, X.R.; Chu, D.K.; Duan, J.A.; He, J. Robust laser-structured asymmetrical PTFE mesh for underwater directional transportation and continuous collection of gas bubbles. Appl. Phys. Lett. 2018, 112, 243701. [Google Scholar] [CrossRef]
- Li, J.; Wu, R.; Jing, Z.; Yan, L.; Zha, F.; Lei, Z. One-step spray-coating process for the fabrication of colorful superhydrophobic coatings with excellent corrosion resistance. Langmuir 2015, 31, 10702–10707. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Xiong, D.S.; Deng, Y.L.; Shi, Y.; Wang, K. Mechanically robust superhydrophobic steel surface with anti-icing, UV-durability, and corrosion resistance properties. ACS Appl. Mater. Interface 2015, 7, 6260–6272. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.T.; Zhang, Z.Z.; Men, X.H.; Yang, J.; Wang, K.; Xu, X.H.; Zhou, X.Y.; Xue, Q.J. Robust superhydrophobic surfaces with mechanical durability and easy repairability. J. Mater. Chem. 2011, 21, 15793–15797. [Google Scholar] [CrossRef]
- Marmur, A.; Volpe, C.D.; Siboni, S.; Amirfazli, A.; Drelich, J.W. Contact angles and wettability: towards common and accurate terminology. Surf. Innov. 2017, 5, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Starostin, A.; Valtsifer, V.; Strelnikov, V.; Bormashenko, E.; Grynyov, R.; Bormashenko, Y.; Gladkikh, A. Robust technique allowing the manufacture of superoleophobic (omniphobic) metallic surfaces. Adv. Eng. Mater. 2014, 16, 1127–1132. [Google Scholar] [CrossRef]
- Nosonovsky, M. Multiscale roughness and stability of superhydrophobic biomimetic interfaces. Langmuir 2007, 23, 3157–3161. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.T.; Liang, J.; Liu, B.X.; Peng, Z.J. Preparation of superhydrophobic zinc coating for corrosion protection. Colloids Surf. A 2014, 454, 113–118. [Google Scholar] [CrossRef]
- Brassard, J.D.; Sarkar, D.K.; Perron, J.; Audibert-Hayet, A.; Melot, D. Nano-micro structured superhydrophobic zinc coating on steel for prevention of corrosion and ice adhesion. J. Colloid Interface Sci. 2015, 447, 240–247. [Google Scholar] [CrossRef] [Green Version]
- Qian, B.; Shen, Z. Fabrication of superhydrophobic surfaces by dislocation- selective chemical etching on aluminum, copper, and zinc substrates. Langmuir 2005, 21, 9007–9009. [Google Scholar] [CrossRef]
- Yoshida, S. Quantitative evaluation of an epoxy resin dispersion by infrared spectroscopy. Polym. J. 2014, 46, 430–434. [Google Scholar] [CrossRef]
- Kang, Y.S.; Lee, D.K.; Stroeve, P. FTIR and UV-vis spectroscopy studies of Langmuir–Blodgett films of stearic acid/γ-Fe2O3 nanoparticles. Thin Solid Films 1998, 327, 541–544. [Google Scholar] [CrossRef]
- Raman, A.; Quiñones, R.; Barriger, L.; Eastman, R.; Parsi, A.; Gawalt, E. Understanding organic film behavior on alloy and metal oxides. Langmuir 2010, 26, 1747–1754. [Google Scholar] [CrossRef] [PubMed]
- Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D. Handbook of X-ray Photoelectron Spectroscopy; Perkin-Elmer Corporation: Eden Prairie, MN, USA, 1992. [Google Scholar]
- Feng, L.B.; Zhang, H.X.; Mao, P.Z.; Wang, Y.P.; Ge, Y. Superhydrophobic alumina surface based on stearic acid modification. Appl. Surf. Sci. 2011, 257, 3959–3963. [Google Scholar] [CrossRef]
- Peng, S.; Tian, D.; Yang, X.J.; Deng, W.L. Highly efficient and large-scale fabrication of superhydrophobic alumina surface with strong stability based on self-congregated alumina nanowires. ACS Appl. Mater. Interfaces 2014, 6, 4831–4841. [Google Scholar] [CrossRef]
- Liu, L.J.; Xu, F.Y.; Ma, L. Facile fabrication of a superhydrophobic Cu surface via a selective etching of high-energy facets. J. Phys. Chem. C 2012, 116, 18722–18727. [Google Scholar] [CrossRef]
- Huang, W.H.; Lin, C.S. Robust superhydrophobic transparent coatings fabricated by a low-temperature sol-gel process. Appl. Surf. Sci. 2014, 305, 702–709. [Google Scholar] [CrossRef]
- Liu, L.J.; Feng, X.R.; Guo, M.X. Eco-friendly fabrication of superhydrophobic bayerite array on Al foil via an etching and growth process. J. Phys. Chem. C 2013, 117, 25519–25525. [Google Scholar] [CrossRef]
- He, Z.; Ma, M.; Lan, X.; Chen, F.; Wang, K.; Deng, H.; Zhang, Q.; Fu, Q. Fabrication of a transparent superamphiphobic coating with improved stability. Soft Matter 2011, 7, 6435–6443. [Google Scholar] [CrossRef]
- Standard Test Methods for Measuring Adhesion by Tape Test, (Method B: Cross-Cut Tape Test); ASTM D 3359; American Society for Testing Materials: West Conshohocken, PA, USA, 2006.
Element | Fe-Zn | Fe-Zn-HAc-STA | ||
---|---|---|---|---|
Before Corrosion | After Corrosion | Before Corrosion | After Corrosion | |
C | 61.83 ± 6.23% | 17.48 ± 4.45% | 78.07 ± 4.29% | 80.63 ± 8.53% |
O | 6.14 ± 0.75% | 53.77 ± 7.42% | 8.46 ± 3.20% | 7.61± 1.58% |
Zn | 32.03 ± 4.15% | 19.58 ± 3.68% | 13.47 ± 1.47% | 9.24 ± 1.08% |
Cl | 0.00% | 9.16 ± 1.51% | 0.00% | 2.53 ± 0.89% |
Element | Before Corrosion | After Corrosion at Different Flow Rate | |
---|---|---|---|
1 m/s | 4 m/s | ||
C | 78.07 ± 4.29% | 80.04 ± 5.53% | 10.50 ± 2.14% |
O | 8.46 ± 3.20% | 13.63 ± 3.89% | 56.47 ± 5.89% |
Zn | 13.47 ± 1.47% | 6.17 ± 1.20% | 30.82 ± 4.18% |
Cl | 0.00% | 0.16 ± 0.02% | 2.21 ± 3.55% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ou, J.; Zhu, W.; Xie, C.; Xue, M. Mechanically Robust and Repairable Superhydrophobic Zinc Coating via a Fast and Facile Method for Corrosion Resisting. Materials 2019, 12, 1779. https://doi.org/10.3390/ma12111779
Ou J, Zhu W, Xie C, Xue M. Mechanically Robust and Repairable Superhydrophobic Zinc Coating via a Fast and Facile Method for Corrosion Resisting. Materials. 2019; 12(11):1779. https://doi.org/10.3390/ma12111779
Chicago/Turabian StyleOu, Junfei, Wenhui Zhu, Chan Xie, and Mingshan Xue. 2019. "Mechanically Robust and Repairable Superhydrophobic Zinc Coating via a Fast and Facile Method for Corrosion Resisting" Materials 12, no. 11: 1779. https://doi.org/10.3390/ma12111779
APA StyleOu, J., Zhu, W., Xie, C., & Xue, M. (2019). Mechanically Robust and Repairable Superhydrophobic Zinc Coating via a Fast and Facile Method for Corrosion Resisting. Materials, 12(11), 1779. https://doi.org/10.3390/ma12111779