Solid-State Characterization of Different Crystalline Forms of Sitagliptin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sitagliptin Phosphate Monohydrate (STG)
2.2. Sitagliptin Phosphate Anhydrous (STGA)
2.3. Sitagliptin Base Form (STGB)
2.4. Differential Scanning Calorimetry (DSC)
2.5. Thermogravimetry (TG)
2.6. Thermogravimetry–Mass Spectrometry (TG-MS)
2.7. Melting Point
2.8. Fourier Transform Infrared (FTIR) Spectroscopy
2.9. Raman Spectroscopy
2.10. X-ray Powder Diffraction (XRPD)
2.11. Scanning Electron Microscopy (SEM)
3. Results and Discussion
3.1. Thermal Characterization
3.2. Purity Study
3.3. Kinetics Analysis
3.4. Fourier Transform Infrared (FTIR) Spectroscopy
3.5. Raman Spectroscopy
3.6. X-ray Powder Diffraction (XRPD)
3.7. Scanning Electron Microscopy (SEM)
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Green, J.B.; Bethel, M.A.; Armstrong, P.W.; Buse, J.B.; Engel, S.S.; Garg, J.; Josse, R.; Kaufman, K.D.; Koglin, J.; Korn, S.; et al. Effect of Sitagliptin on Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2015, 373, 232–242. [Google Scholar] [CrossRef] [PubMed]
- Berger, J.P.; Sinharoy, R.; Pocai, A.; Kelly, T.M.; Scapin, G.; Kelly, Y.G.; Pryor, A.D.; Wu, J.K.; Eiermann, G.J.; Xu, S.S.; et al. A comparative study of the binding properties, dipeptidyl peptidase-4 (DPP-4) inhibitory activity and glucose-lowering efficacy of the DPP-4 inhibitors alogliptin, linagliptin, saxagliptin, sitagliptin and vildagliptin in mice. Endocrinol. Diabetes Metab. 2018, 1, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Remm, F.; Kränkel, N.; Lener, D.; Drucker, D.J.; Sopper, S.; Brenner, C. Sitagliptin Accelerates Endothelial Regeneration after Vascular Injury Independent from GLP1 Receptor Signaling. Stem Cells Int. 2018, 2018, 5284963. [Google Scholar] [CrossRef] [PubMed]
- Doggrell, S.A.; Dimmitt, S.B. Sitagliptin and other ‘gliptins’—Why prescribe them? Expert Opin. Pharmacother. 2016, 17, 757–760. [Google Scholar] [CrossRef]
- Tieger, E.; Kiss, V.; Pokol, G.; Finta, Z. Crystallisation of a salt hydrate with a complex solid form landscape. Cryst. Eng. Comm. 2017, 19, 1912–1925. [Google Scholar] [CrossRef] [Green Version]
- Sirigiri, N.; Subramanian, N.S.; Reddy, G.N.K. Stability indicating method development and validation for simultaneous estimation of sitagliptin phosphate and metformin HCl in tablets by HPLC. Int. J. Pharm. Sci. Res. 2018, 9, 4294–4302. [Google Scholar]
- Datta, S.; Grant, D.J.W. Crystal structures of drugs: Advances in determination, prediction and engineering. Nat. Rev. Drug Discov. 2004, 3, 42–57. [Google Scholar] [CrossRef] [PubMed]
- Khadka, P.; Ro, J.; Kim, H.; Kim, I.; Kim, J.T.; Kim, H.; Cho, J.M.; Yun, G.; Lee, J. Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability. Asian J. Pharm. Sci. 2014, 9, 304–316. [Google Scholar] [CrossRef] [Green Version]
- Savjani, K.T.; Gajjar, A.K.; Savjani, J.K. Drug Solubility: Importance and Enhancement Techniques. ISRN Pharm. 2012, 2012, 195727. [Google Scholar] [CrossRef]
- Murakami, F.S.; Lang, K.L.; Mendes, C.; Cruz, A.P.; Filho, M.A.S.C.; Silva, M.A.S. Physico-chemical solid-state characterization of omeprazole sodium: Thermal, spectroscopic and crystallinity studies. J. Pharm. Biomed. Anal. 2009, 49, 72–80. [Google Scholar] [CrossRef]
- Giron, D. Applications of thermal analysis and coupled techniques in pharmaceutical industry. J. Therm. Anal. Calorim. 2002, 68, 335–357. [Google Scholar] [CrossRef]
- Perlman, N.; Ramaty, R.; Lancry, E.; Kalujny, M. Crystalline Form of Sitagliptin. U.S. Patent US20090221595A1, 3 September 2009. [Google Scholar]
- Dwivedi, S.P.D.; Singh, K.K.; Narode, S.D.; Patel, D.J.; Solanki, K.S. Process for the Preparation of Sitagliptn Phosphate. U.S. Patent US9409912B2, 9 August 2016. [Google Scholar]
- Veiga, A.; Oliveira, P.R.; Bernardi, L.S.; Mendes, C.; Silva, M.A.S.; Sangoi, M.S.; Janissek, P.R.; Murakami, F.S. Solid-state compatibility studies of a drug without melting point: The case of omeprazole sodium. J. Therm. Anal. Calorim. 2018, 131, 3201–3209. [Google Scholar] [CrossRef]
- Farmacopeia Brasileira, 5th ed.; Agência Nacional de Vigilância Sanitária: Brasília, Brazil, 2010; Volume 1.
- Karkhanis, V.V. Development and Validation of Analytical Methods for Some Antidiabetic Drugs. Ph.D. Thesis, Sardar Patel University, Anand, India, 2013. [Google Scholar]
- You, J.; Wu, C.; Wang, X. The thermal decomposition mechanism and kinetics of tenoxicam. J. Anal. Appl. Pyrol. 2018, 134, 573–579. [Google Scholar] [CrossRef]
- Vishnuvardhan, C.; Radhakrishnanand, P.; Navalgund, S.G.; Satheeshkumar, N. Liquid chromatography/electrospray ionisation tandem mass spectrometric study of sitagliptin and its stressed degradation products. Drug Res. 2014, 64, 668–674. [Google Scholar] [CrossRef] [PubMed]
- Bertol, C.D.; Pereira, R.N.; Mendes, C.; Paulino, A.S.; Silva, M.A.S.; Froehlich, P.E. Physicochemical characterization of dipeptidyl peptidase-4 inhibitor alogliptin in physical mixtures with excipients. J. Therm. Anal. Calorim. 2017, 130, 1575–1584. [Google Scholar] [CrossRef]
- Cai, J.; Liu, R.; Huang, C. Kinetic analysis of nonisothermal solid-state reactions: Determination of the kinetic parameters by means of a nonlinear regression method. J. Math. Chem. 2008, 44, 551–558. [Google Scholar] [CrossRef]
- Hsieh, W.; Cheng, W.; Chen, L.; Lin, S. Non-isothermal dehydration kinetic study of aspartame hemihydrate using DSC, TGA and DSC-FTIR microspectroscopy. Asian J. Pharm. Sci. 2018, 13, 212–219. [Google Scholar] [CrossRef]
- Murakami, F.S.; Bernardi, L.S.; Pereira, R.N.; Valente, B.R.; Vasconcelos, E.C.; Carvalho Filho, M.A.S.; Silva, M.A.S. Comparative behavior studies of cinnamic acid using isothermal and nonisothermal kinetic methods. Pharm. Chem. J. 2009, 43, 716–720. [Google Scholar] [CrossRef]
- Ozawa, T. A New Method of Analyzing Thermogravimetric Data. Bull. Chem. Soc. Jpn. 1965, 38, 1881–1886. [Google Scholar] [CrossRef] [Green Version]
- Flynn, J.H.; Wall, L.A. General treatment of the thermogravimetry of polymers. J. Res. Natl. Bur. Stand. Sect. A Phys. Chem. 1966, 70, 487–523. [Google Scholar] [CrossRef]
- Beasley, M.M.; Bartelink, E.J.; Taylor, L.; Miller, R.M. Comparison of transmission FTIR, ATR, and DRIFT spectra: Implications for assessment of bone bioapatite diagenesis. J. Archaeol. Sci. 2014, 46, 16–22. [Google Scholar] [CrossRef]
- Brittain, H.G. Mid-Infrared Spectroscopy of Pharmaceutical Solids. In Profiles of Drug Substances, Excipients and Related Methodology; Elsevier Inc.: Amsterdam, The Netherlands, 2018; Volume 43, pp. 321–358. [Google Scholar]
- Mohamed, M.A.; Jaafar, J.; Ismail, A.F.; Othman, M.H.D.; Rahman, M.A. Fourier Transform Infrared Spectroscopy. In Spectroscopic Methods for Nanomaterials Characterization; Elsevier B.V.: Amsterdam, The Netherlands, 2017; Volume 2, pp. 73–93. [Google Scholar]
- Wagh, M.P.; Patwardhan, D.M.; Patil, R.R. Formulation development and evaluation of sitagliptin phoshphate. Eur. J. Biomed. Pharm. Sci. 2017, 4, 500–513. [Google Scholar]
- Frost, R.L.; Xi, Y.; Scholz, R.; López, A.; Belotti, F.M. Vibrational spectroscopic characterization of the phosphate mineral hureaulite-(Mn, Fe)5(PO4)2(HPO4)2·4(H2O). Vib. Spectrosc. 2013, 66, 69–75. [Google Scholar] [CrossRef]
- Oliveira, L.J.; Stofella, N.C.F.; Veiga, A.; Féderle, S.; da Graça, T.; Toledo, M.; Bernardi, L.S.; Oliveira, P.R.; Carvalho Filho, M.A.S.; Andreazza, I.F.; et al. Physical–chemical characterization studies of ketoprofen for orodispersible tablets. J. Therm. Anal. Calorim. 2018, 133, 1521–1533. [Google Scholar] [CrossRef]
- Rajesh, S.; Gunasekaran, S.; Rajesh, P. HOMO-LUMO, NBO and Vibrational analysis of Sitagliptin by using DFT calculations and Experimental Study (FT-IR, FT-Raman and UV-Visible Spectroscopies). Int. J. Chem. Tech. Res. 2018, 11, 107–122. [Google Scholar] [CrossRef]
- Cullity, B.D.; Stock, S.R. Elements of X-ray Diffraction: Pearson New International Edition; Pearson Education Limited: London, UK, 2013. [Google Scholar]
- Mantri, R.V.; Sanghvi, R.; Zhu, H.J. Solubility of Pharmaceutical Solids. In Developing Solid Oral Dosage Forms; Qiu, Y., Chen, Y., Zhang, G.G.Z., Yu, L., Mantri, R.V., Eds.; Academic Press: Cambridge, MA, USA, 2016; p. 3. [Google Scholar]
- Prado, L.D.; Rocha, H.V.A. Estado sólido na indústria farmacêutica: Uma breve revisão. Rev. Virtual Quim. 2015, 7, 2080–2112. [Google Scholar] [CrossRef]
- Kaduk, J.A.; Zhong, K.; Gindhart, A.M.; Blanton, T.N. Crystal structure of sitagliptin dihydrogen phosphate monohydrate, C16H16F6N5O(H2PO4) (H2O). Powder Diffr. 2015, 30, 349–356. [Google Scholar] [CrossRef]
Activation Energy (Ea) | Coefficient of Variation | Reaction Order | |
---|---|---|---|
STG | 89.29 ± 2.881 kJ mol−1 | 1.301% | n = 0 |
STGA | 88.84 ± 1.561 kJ mol−1 | 1.757% | n = 0 |
STGB | 78.21 ± 2.591 kJ mol−1 | 3.313% | n = 0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stofella, N.C.F.; Veiga, A.; Oliveira, L.J.; Montin, E.F.; Andreazza, I.F.; Carvalho Filho, M.A.S.; Bernardi, L.S.; Oliveira, P.R.; Murakami, F.S. Solid-State Characterization of Different Crystalline Forms of Sitagliptin. Materials 2019, 12, 2351. https://doi.org/10.3390/ma12152351
Stofella NCF, Veiga A, Oliveira LJ, Montin EF, Andreazza IF, Carvalho Filho MAS, Bernardi LS, Oliveira PR, Murakami FS. Solid-State Characterization of Different Crystalline Forms of Sitagliptin. Materials. 2019; 12(15):2351. https://doi.org/10.3390/ma12152351
Chicago/Turabian StyleStofella, Nayana C. F., Andressa Veiga, Laiane J. Oliveira, Elisa F. Montin, Itamar F. Andreazza, Marco A. S. Carvalho Filho, Larissa S. Bernardi, Paulo R. Oliveira, and Fábio S. Murakami. 2019. "Solid-State Characterization of Different Crystalline Forms of Sitagliptin" Materials 12, no. 15: 2351. https://doi.org/10.3390/ma12152351
APA StyleStofella, N. C. F., Veiga, A., Oliveira, L. J., Montin, E. F., Andreazza, I. F., Carvalho Filho, M. A. S., Bernardi, L. S., Oliveira, P. R., & Murakami, F. S. (2019). Solid-State Characterization of Different Crystalline Forms of Sitagliptin. Materials, 12(15), 2351. https://doi.org/10.3390/ma12152351