Dental Implants with Anti-Biofilm Properties: A Pilot Study for Developing a New Sericin-Based Coating
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Chemicals
2.3. Ti-6Al-4V Substrate Preparation
2.4. NaOH Etching
2.5. Silanization
2.6. Bioconjugation
2.7. Micromorphological and Compositional Surface Characterization
2.8. Microbiological Test
3. Results
3.1. Morphology and Surface Composition
NaOH Etching
3.2. Silanization
3.3. Bioconjugation
3.4. Anti-Biofilm Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lang, N.P.; Berglundh, T.; on Behalf of Working Group 4 of the Seventh European Workshop on Periodontology. Periimplant diseases: Where are we now?—Consensus of the seventh european workshop on periodontology. J. Clin. Periodontol. 2011, 38, 178–181. [Google Scholar] [CrossRef] [PubMed]
- Do, T.; Devine, D.; Marsh, P.D. Oral Biofilms: Molecular Analysis, Challenges, and Future Prospects in Dental Diagnostics. Clin. Cosmet. Investig. Dent. 2013, 5, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Derks, J.; Tomasi, C. Peri-Implant Health and Disease. A Systematic Review of Current Epidemiology. J. Clin. Periodontol. 2015, 42, S158–S171. [Google Scholar] [CrossRef] [PubMed]
- Quirynen, M.; De Soete, M.; Van Steenberghe, D. Infectious Risks for Oral Implants: A Review of the Literature. Clin. Oral Implants Res. 2002, 13, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Quirynen, M.; Vogels, R.; Peeters, W.; Van Steenberghe, D.; Naert, I.; Haffajee, A. Dynamics of Initial Subgingival Colonization of “Pristine” Peri-Implant Pockets. Clin. Oral Implants Res. 2006, 17, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Romeo, E.; Ghisolfi, M.; Carmagnola, D. Peri-Implant Diseases. A Systematic Review of the Literature. Minerva Stomatol. 2004, 53, 215–230. [Google Scholar] [PubMed]
- Klinge, B.; Hultin, M.; Berglundh, T. Peri-Implantitis. Dent. Clin. N. Am. 2005, 49, 661–676. [Google Scholar] [CrossRef]
- Malchiodi, L.; Cucchi, A.; Ghensi, P.; Bondì, V. A case of rapidly progressive peri-implantitis around a short sintered porous-surfaced implant. J. Indiana Dent. Assoc. 2009, 88, 33–35. [Google Scholar]
- Malchiodi, L.; Ghensi, P.; Cucchi, A.; Pieroni, S.; Bertossi, D. Peri-Implant Conditions Around Sintered Porous-Surfaced (Sps) Implants. A 36-Month Prospective Cohort Study. Clin. Oral Implants Res. 2015, 26, 212–219. [Google Scholar] [CrossRef]
- Harris, L.G.; Richards, R.G. Staphylococci and Implant Surfaces: A Review. Injury 2006, 37 (Suppl. 2), S3–S14. [Google Scholar] [CrossRef]
- Puleo, D.A.; Kissling, R.A.; Sheu, M.S. A Technique to Immobilize Bioactive Proteins, Including Bone Morphogenetic Protein-4 (Bmp-4), on Titanium Alloy. Biomaterials 2002, 23, 2079–2087. [Google Scholar] [CrossRef]
- Gan, L.; Pilliar, R. Calcium Phosphate Sol–Gel-Derived Thin Films on Porous-Surfaced Implants for Enhanced Osteoconductivity. Part I: Synthesis and Characterization. Biomaterials 2004, 25, 5303–5312. [Google Scholar] [CrossRef] [PubMed]
- Cai, K.; Frant, M.; Bossert, J.; Hildebrand, G.; Liefeith, K.; Jandt, K.D. Surface Functionalized Titanium Thin Films: Zeta-Potential, Protein Adsorption and Cell Proliferation. Colloids Surf. B Biointerfaces 2006, 50, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Vanzillotta, P.S.; Sader, M.S.; Bastos, I.N.; De Soares, G.A. Improvement of in vitro titanium bioactivity by three different surface treatments. Dent. Mater. 2006, 22, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Lindgren, M.; Astrand, M.; Wiklund, U.; Engqvist, H. Investigation of boundary conditions for biomimetic ha deposition on titanium oxide surfaces. J. Mater. Sci. Mater. Med. 2009, 20, 1401–1408. [Google Scholar] [CrossRef] [PubMed]
- Malchiodi, L.; Ghensi, P.; Cucchi, A.; Trisi, P.; Szmukler-Moncler, S.; Corrocher, G.; Et, A.L. Early Bone Formation Around Immediately Loaded Fbr-Coated Implants After 8, 10 and 12 Weeks: A Human Histologic Evaluation of Three Retrieved Implants. Minerva Stomatol. 2011, 60, 205–216. [Google Scholar] [PubMed]
- Ghensi, P.; Bressan, E.; Gardin, C.; Ferroni, L.; Ruffato, L.; Caberlotto, M.; Et, A.L. Osteo Growth Induction Titanium Surface Treatment Reduces Ros Production of Mesenchymal Stem Cells Increasing Their Osteogenic Commitment. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 74, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Ghensi, P.; Bressan, E.; Gardin, C.; Ferroni, L.; Soldini, M.C.; Mandelli, F.; Et, A.L. The Biological Properties of Ogi Surfaces Positively Act on Osteogenic and Angiogenic Commitment of Mesenchymal Stem Cells. Materials 2017, 10, 1321. [Google Scholar] [CrossRef] [PubMed]
- Ghensi, P.; Tonetto, G.; Soldini, C.; Bettio, E.; Mortellaro, C.; Soldini, C. Dental Implants with a Platform-Switched Morse Taper Connection and an Osteo Growth Induction Surface. J. Craniofac. Surg. 2019, 30, 1049–1054. [Google Scholar] [CrossRef] [PubMed]
- Beutner, R.; Michael, J.; Schwenzer, B.; Scharnweber, D. Biological nano-functionalization of titanium-based biomaterial surfaces: a flexible toolbox. J. R. Soc. Interface 2010, 7 (Suppl. 1), s93–s105. [Google Scholar] [CrossRef] [PubMed]
- Simchi, A.; Tamjid, E.; Pishbin, F.; Boccaccini, A.R. Recent Progress in Inorganic and Composite Coatings with Bactericidal Capability for Orthopaedic Applications. Nanomedicine 2011, 7, 22–39. [Google Scholar] [CrossRef] [PubMed]
- Norowski, P.A., Jr.; Bumgardner, J.D. Biomaterial and Antibiotic Strategies for Peri-Implantitis: A Review. J. Biomed. Mater. Res. Part B Appl. Biomater. 2009, 88, 530–543. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-Q. Applications of Natural Silk Protein Sericin in Biomaterials. Biotechnol. Adv. 2002, 20, 91–100. [Google Scholar] [CrossRef]
- Aramwit, P.; Siritientong, T.; Srichana, T. Potential applications of silk sericin, a natural protein from textile industry by-products. Waste Manag. Res. 2012, 30, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Gupta, D.; Agrawal, A.; Chaudhary, H.; Gulrajani, M.; Gupta, C. Cleaner Process for Extraction of Sericin Using Infrared. J. Clean. Prod. 2013, 52, 488–494. [Google Scholar] [CrossRef]
- Lamboni, L.; Gauthier, M.; Yang, G.; Wang, Q. Silk Sericin: A Versatile Material for Tissue Engineering and Drug Delivery. Biotechnol. Adv. 2015, 33, 1855–1867. [Google Scholar] [CrossRef]
- Takechi, T.; Wada, R.; Fukuda, T.; Harada, K.; Takamura, H. Antioxidant Activities of Two Sericin Proteins Extracted from Cocoon of Silkworm (Bombyx Mori) Measured by Dpph, Chemiluminescence, Orac and Esr Methods. Biomed. Rep. 2014, 2, 364–369. [Google Scholar] [CrossRef]
- Panthong, J. Program of food engineering, department of food science and technology, faculty of agro-industry, kasetsart university, bangkok, et al. effect of spray drying conditions on the characteristics of sericin powder from eri silk boiling water. Life Int. J. Health Life-Sci. 2015, 1, 151–160. [Google Scholar] [CrossRef]
- Pandiarajan, J.; Cathrin, B.P.; Pratheep, T.; Krishnan, M. Defense Role of the Cocoon in the Silk Worm Bombyx Mori L. Rapid Commun. Mass Spectrom. 2011, 25, 3203–3206. [Google Scholar] [CrossRef]
- Khalifa, I.B.; Belhaj Khalifa, I.; Ladhari, N.; Touay, M. Application of Sericin to Modify Textile Supports. J. Text. Inst. 2012, 103, 370–377. [Google Scholar] [CrossRef]
- Rajendran, R.; Balakumar, C.; Sivakumar, R.; Amruta, T.; Devaki, N. Extraction and Application of Natural Silk Protein Sericin Frombombyx Morias Antimicrobial Finish for Cotton Fabrics. J. Text. Inst. 2012, 103, 458–462. [Google Scholar] [CrossRef]
- Seves, A.; Romanò, M.; Maifreni, T.; Sora, S.; Ciferri, O. The Microbial Degradation of Silk: A Laboratory Investigation. Int. Biodeterior. Biodegrad. 1998, 42, 203–211. [Google Scholar] [CrossRef]
- Akiyama, H.; Torigoe, R.; Arata, J. Interaction of staphylococcus aureus cells and silk threads in vitro and in mouse skin. J. Dermatolog. Sci. 1993, 6, 73. [Google Scholar] [CrossRef]
- Kaur, J.; Rajkhowa, R.; Afrin, T.; Tsuzuki, T.; Wang, X. Facts and Myths of Antibacterial Properties of Silk. Biopolymers 2014, 101, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Taylor, A. Practical Surface Analysis, 2nd ed.; Vol I, Auger and X-Ray Photoelectron Spectroscopy; Briggs, D., Seah, M.P., Eds.; John Wiley: New York, NY, USA, 1990; p. 657, ISBN 0471 92081 9. J. Chem. Technol. Biotechnol. 2007, 53, 215. [Google Scholar] [CrossRef]
- Shirley, D.A. High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold. Phys. Rev. B 1972, 5, 4709–4714. [Google Scholar] [CrossRef] [Green Version]
- Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D. Handbook of X-Ray Photoelectron Spectroscopy; Chastain, J., Ed.; Perkin-Elmer Corp: Eden Prairie, MN, USA, 1992. [Google Scholar]
- Powell, C.J.; Jablonski, A.; Salvat, F.; Lee, A.Y. Nist Electron Elastic-Scattering Cross-Section Database; Version 4.0.; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2016.
- Kim, H.M.; Miyaji, F.; Kokubo, T.; Nakamura, T. Preparation of Bioactive Ti and Its Alloys Via Simple Chemical Surface Treatment. J. Biomed. Mater. Res. 1996, 32, 409–417. [Google Scholar] [CrossRef]
- Wang, X.X.; Hayakawa, S.; Tsuru, K.; Osaka, A. Improvement of Bioactivity of H2O2/Tacl5-Treated Titanium after Subsequent Heat Treatments. J. Biomed. Mater. Res. 2000, 52, 171–176. [Google Scholar] [CrossRef]
- Pattanayak, D.K.; Yamaguchi, S.; Matsushita, T.; Kokubo, T. Nanostructured Positively Charged Bioactive Tio2 Layer Formed on Ti Metal by Naoh, Acid and Heat Treatments. J. Mater. Sci. Mater. Med. 2011, 22, 1803–1812. [Google Scholar] [CrossRef]
- Rodríguez-Contreras, A.; Marqués-Calvo, M.S.; Gil, F.J.; Manero, J.M. Modification of Titanium Surfaces by Adding Antibiotic-Loaded Phb Spheres and Peg for Biomedical Applications. J. Mater. Sci. Mater. Med. 2016, 27, 124. [Google Scholar] [CrossRef]
- Lindahl, C.; Engqvist, H.; Xia, W. Influence of Surface Treatments on the Bioactivity of Ti. Isrn Biomater. 2013, 2013, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Robinson, K.S.; Sherwood, P.M.A. X-Ray Photoelectron Spectroscopic Studies of the Surface of Sputter Ion Plated Films. Surf. Interface Anal. 1984, 6, 261–266. [Google Scholar] [CrossRef]
- Chan, R.T.H.; Marçal, H.; Russell, R.A.; Holden, P.J.; Foster, L.J.R. Application of Polyethylene Glycol to Promote Cellular Biocompatibility of Polyhydroxybutyrate Films. Int. J. Polym. Sci. 2011, 2011, 1–9. [Google Scholar] [CrossRef]
- Darst, S.A.; Robertson, C.R.; Berzofsky, J.A. Adsorption of The Protein Antigen Myoglobin Affects the Binding of Conformation-Specific Monoclonal Antibodies. Biophys. J. 1988, 53, 533–539. [Google Scholar] [CrossRef]
- Lee, C.S.; Belfort, G. Changing activity of ribonuclease a during adsorption: A molecular explanation. Proc. Natl. Acad. Sci. USA 1989, 86, 8392–8396. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.S.; Chittur, K.K.; Sukenik, C.N.; Culp, L.A.; Lewandowska, K. The Conformation of Fibronectin on Self-Assembled Monolayers with Different Surface Composition: An Ftir/Atr Study. J. Colloid Interface Sci. 1994, 162, 135–143. [Google Scholar] [CrossRef]
- Bekos, E.J.; Ranieri, J.P.; Aebischer, P.; Gardella, J.A.; Bright, F.V. Structural changes of bovine serum albumin upon adsorption to modified fluoropolymer substrates used for neural cell attachment studies. Langmuir 1995, 11, 984–989. [Google Scholar] [CrossRef]
- Puleo, D.A. Activity of Enzyme Immobilized on Silanized Co-Cr-Mo. J. Biomed. Mater. Res. 1995, 29, 951–957. [Google Scholar] [CrossRef]
- Puleo, D. Biochemical Surface Modification of Co_Cr_Mo. Biomaterials 1996, 17, 217–222. [Google Scholar] [CrossRef]
- Werb, Z.; Tremble, P.; Werb, Z.; Damsky, C.H.; Tremble, P.; Damsky, C.H. Regulation of Extracellular Matrix Degradation by Cell—Extracellular Matrix Interactions. Cell Differ. Dev. 1990, 32, 299–306. [Google Scholar] [CrossRef]
- Larsson, L.-I.-I.; Larsson, L.; Hougard, D.M. Glass slide models for immunocytochemistry and in situ hybridization. Histochemistry 1994, 101, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Ahluwalia, A.; De Rossi, D.; Ristori, C.; Schirone, A.; Serra, G. A comparative study of protein immobilization techniques for optical immunosensors. Biosens. Bioelectron. 1992, 7, 207–214. [Google Scholar] [CrossRef]
- Tack, L.; Schickle, K.; Böke, F.; Fischer, H. Immobilization of Specific Proteins to Titanium Surface Using Self-Assembled Monolayer Technique. Dent. Mater. 2015, 31, 1169–1179. [Google Scholar] [CrossRef] [PubMed]
- Ceresa, C.; Tessarolo, F.; Caola, I.; Maniglio, D.; Nollo, G.; Rinaldi, M.; Fracchia, L. Inhibition of Candida albicans biofilm by lipopeptide AC7 coated medical-grade silicone in combination with farnesol. AIMS Bioeng. 2018, 5, 192–208. [Google Scholar] [CrossRef]
Surface Treatment | C 1s | N 1s | O 1s | Na 1s | Si 2p | S 2p | Ti 2p |
---|---|---|---|---|---|---|---|
C- | 58.2 | 34.1 | 1.5 | 1.15 | 5.0 | ||
NaOH | 16.9 | 0.9 | 52.5 | 11.7 | 0.4 | 17.6 | |
NaOH + VapAPTES | 26.1 | 5.4 | 49.8 | 4.4 | 14.4 | ||
NaOH + SolAPTES | 22.5 | 3.5 | 55.0 | 2.9 | 16.1 | ||
NaOH + VapAPTES vap + GLU | 49.6 | 8.5 | 33.8 | 2.4 | 5.7 | ||
NaOH + VapAPTES vap + EDC/NHS | 22.0 | 5.3 | 54.7 | 0.5 | 17.5 |
Surface Treatment | Absorbance @540 nm | Biofilm Biomass (% in Respect to Controls) | Biofilm Inhibition (% in Respect to Controls) | |
---|---|---|---|---|
Mean | S.E. | Mean | Mean | |
C- | 2.38 | 0.04 | 100 | 0 |
NaOH | 1.76 | 0.50 | 74 | 26 |
NaOH + VapAPTES | 1.91 | 0.37 | 80 | 20 |
NaOH + VapAPTES vap + GLU | 1.11 | 0.27 | 47 | 53 |
NaOH + VapAPTES vap + EDC/NHS | 1.45 | 0.29 | 61 | 39 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghensi, P.; Bettio, E.; Maniglio, D.; Bonomi, E.; Piccoli, F.; Gross, S.; Caciagli, P.; Segata, N.; Nollo, G.; Tessarolo, F. Dental Implants with Anti-Biofilm Properties: A Pilot Study for Developing a New Sericin-Based Coating. Materials 2019, 12, 2429. https://doi.org/10.3390/ma12152429
Ghensi P, Bettio E, Maniglio D, Bonomi E, Piccoli F, Gross S, Caciagli P, Segata N, Nollo G, Tessarolo F. Dental Implants with Anti-Biofilm Properties: A Pilot Study for Developing a New Sericin-Based Coating. Materials. 2019; 12(15):2429. https://doi.org/10.3390/ma12152429
Chicago/Turabian StyleGhensi, Paolo, Elia Bettio, Devid Maniglio, Emiliana Bonomi, Federico Piccoli, Silvia Gross, Patrizio Caciagli, Nicola Segata, Giandomenico Nollo, and Francesco Tessarolo. 2019. "Dental Implants with Anti-Biofilm Properties: A Pilot Study for Developing a New Sericin-Based Coating" Materials 12, no. 15: 2429. https://doi.org/10.3390/ma12152429
APA StyleGhensi, P., Bettio, E., Maniglio, D., Bonomi, E., Piccoli, F., Gross, S., Caciagli, P., Segata, N., Nollo, G., & Tessarolo, F. (2019). Dental Implants with Anti-Biofilm Properties: A Pilot Study for Developing a New Sericin-Based Coating. Materials, 12(15), 2429. https://doi.org/10.3390/ma12152429