Effectiveness of Surface Treatment with Amine Plasma for Improving the Biocompatibility of Maxillofacial Plates
Abstract
:1. Introduction
2. Materials and Experimental Methods
2.1. Materials
2.2. Amine Plasma-Polymerization on Sandblasted with Large Acid-Etched Grits (SLA)-Treated Ti Surface
2.3. Tiatanium Surface Characterization after Amine Plasma-Polymerization
2.3.1. Hydrophilicity Evaluation
2.3.2. Surface Analysis of Polyallylamine Thin Film Deposited by Amine Plasma-Polymerization
2.3.3. Evaluation of Amine Concentration
2.3.4. Surface Chemistry Analysis
2.4. In Vitro Evaluation of Titanium Plates following Amine Plasma Treatment
2.4.1. Culture of Cell Lines
2.4.2. Evaluation of the Osteoblast Proliferation
2.4.3. Observations of Cytoskeletons and Nuclei of the Osteoblast
2.4.4. Evaluation of Osteoblasts Differentiation
2.4.5. Evaluation of Bone Calcification
2.5. Animal Study
2.6. Statistical Analysis
3. Results and Discussion
3.1. Changes of Ti Surface Characterizations after Amine Plasma-Polymerization
3.1.1. Determination of Amine Concentrations
3.1.2. Identification of Polyallylamine Ultra-Thin Film Deposited on the Ti Surface
3.1.3. Surface Chemistry Analysis
3.1.4. Hydrophilicity
3.2. In Vitro Evaluations
3.2.1. Proliferation Rate of Osteoblastic Cell Lines
3.2.2. Observations of Cytoskeletons and Nuclei of the Osteoblastic Cell Lines
3.2.3. Differentiation of Osteoblastic Cell Lines
3.2.4. Bone Calcification
3.3. Animal Study
3.3.1. Clinical Evaluation
3.3.2. Histological Findings
3.3.3. Histomorphometirc Findings
3.3.4. Micro-Computed Tomography (Micro-CT) Findings
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Brown, A.; Zaky, S.; Ray, H.; Sfeir, C. Porous magnesium/PLGA composite scaffolds for enhanced bone regeneration following tooth extraction. Acta Biomater. 2015, 11, 543–553. [Google Scholar] [CrossRef] [PubMed]
- Tevlin, R.; McArdle, A.; Atashroo, D.; Walmsley, G.G.; Senarath-Yapa, K.; Zielins, E.R.; Paik, K.J.; Longaker, M.T.; Wan, D.C. Biomaterials for craniofacial bone engineering. J. Dent. Res. 2014, 93, 1187–1195. [Google Scholar] [CrossRef] [PubMed]
- Neovius, E.; Engstrand, T. Craniofacial reconstruction with bone and biomaterials: Review over the last 11 years. J. Plast. Reconstr. Aesthet. Surg. 2010, 63, 1615–1623. [Google Scholar] [CrossRef] [PubMed]
- Porter, J.R.; Ruckh, T.T.; Popat, K.C. High calcium bioglass enhances differentiation and survival of endothelial progenitor cells, inducing early vascularization in critical size bone defects. PLoS ONE 2009, 25, 1539–1560. [Google Scholar]
- Kim, D.G. Finite element analysis of stress and deformation according to the shape of plates for internal bone fixation. J. Korean Orthop. Assoc. 2012, 47, 257–263. [Google Scholar]
- Kweon, H.Y.; Yoo, M.K.; Park, I.K.; Kim, T.H.; Lee, H.C.; Lee, H.S.; Oh, J.S.; Akaike, T.; Cho, C.S. A novel degradable polycaprolactone network for tissue engineering. Biomaterials. 2003, 24, 801–808. [Google Scholar] [CrossRef]
- Suh, S.W.; Shin, J.Y.; Kim, J.; Kim, J.; Beak, C.H.; Kim, D.I.; Kim, H.; Jeon, S.S.; Choo, I.W. Effect of different particles on cell proliferation in polymer scaffolds using a solvent-casting and particulate leaching technique. ASAIO J. 2002, 48, 460–464. [Google Scholar] [CrossRef]
- Kook, M.S.; Roh, H.S.; Kim, B.H. Effect of oxygen plasma etching on pore size-controlled 3D polycaprolactone scaffold s for enhancing the early new bone formation in rabbit calvaria. Dent. Mater. J. 2018, 37, 599–610. [Google Scholar] [CrossRef]
- Won, J.Y.; Park, C.Y.; Bae, J.H.; Ahn, G.; Kim, C.; Lim D., H.; Cho, D.W.; Yun, W.S.; Shim, J.H.; Huh, J.B. Evaluation of 3D printed PCL/PLGA/β-TCP versus collagen membranes for guided bone regeneration in a beagle implant model. Biomed. Mater. 2016, 11, 055013. [Google Scholar] [CrossRef]
- Shim, J.H.; Won, J.Y.; Park, J.H.; Bae, J.H.; Ahn, G.; Kim, C.H.; Lim, D.H.; Cho, D.W.; Yun, W.S.; Bae, E.B.; et al. Effects of 3D-printed polycaprolactone/-tricalcium phosphate membranes on guided bone regeneration. Int. J. Mol. 2017, 18, E899. [Google Scholar] [CrossRef]
- Lavik, E.; Langer, R. Tissue engineering: Current state and perspectives. Appl. Microbiol. Biotechnol. 2004, 65, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.C.; Mikos, A.G.; Fisher, J.P.; Jansen, J.A. Strategic directions in tissue engineering. Tissue Eng. 2007, 13, 2827–2837. [Google Scholar] [CrossRef] [PubMed]
- Mooney, D.J.; Baldwin, D.F.; Suh, N.P.; Vacanti, J.P.; Langer, R. Novel approach to fabricate porous sponges of poly (D,Llactic co-glycolic acid) without the use of organic solvents. Biomaterials 1996, 17, 1417–1422. [Google Scholar] [CrossRef]
- Yamoso-Scholl, K.; Jacobson, J.A.; Bradica, G.; Lerner, A.L.; O’Keefe, R.J.; Schwarz, E.M.; Zuscik, M.J.; Awad, H.A. Evaluation of dense polylactic acid/beta-tricalcium phosphate scaffolds for bone tissue engineering. J. Biomed. Mater. Res. A 2010, 95, 717–726. [Google Scholar]
- Holliser, S.J.; Lin, C.Y.; Saito, E.; Schek, R.D.; Taboas, J.M.; Williams, J.M.; Partee, B.; Flanagan, C.L.; Diggs, A.; Wilke, E.N.; et al. Engineering craniofacial scaffolds. Orthod. Craniofac. Res. 2005, 8, 162–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lourenço, M.N.; Sartori, E.M.; Padovan, L.E.M.; Thomé, G.; Faeda, R.S.; Marcantonio, J.E.; Claudino, M. Bone apposition and surface treatment in dental implants: Histomorphometric pilot evaluation in rabbits. RSBO 2013, 10, 326–334. [Google Scholar]
- Cheng, Z.Y.; Teoh, S.H. Surface modification of ultra thin poly (epsilon-caprolactone) films using acrylic acid and collagen. Biomaterials 2004, 25, 1991–2001. [Google Scholar] [CrossRef] [PubMed]
- Sarasam, A.R.; Krishnaswamy, R.K.; Madihally, S.V. Blending chitosan with polycaprolactone: Effects on physicochemical and antibacterial properties. Biomacromolecules 2006, 7, 1131–1138. [Google Scholar] [CrossRef] [PubMed]
- Tiaw, K.S.; Goh, S.W.; Hong, M.; Wang, Z.; Lan, B.; Teoh, S.H. Laser surface modification of poly(ε-caprolactone) (PCL) membrane for tissue engineering applications. Biomaterials 2005, 26, 763–769. [Google Scholar] [CrossRef]
- Katti, D.; Vasita, R.; Shanmugam, K. Improved biomaterials for tissue engineering applications: Surface modification of polymers. Curr. Top. Med. Chem. 2008, 8, 341–353. [Google Scholar] [CrossRef]
- Ma, Z.; Mao, Z.; Gao, C. Surface modification and property analysis of biomedical polymers used for tissue engineering. Colloid. Surface. B 2007, 60, 137–157. [Google Scholar] [CrossRef] [PubMed]
- Nanci, A.; Wuest, J.D.; Brunet, P. Chemical modification of titanium surfaces for covalent attachment of biological molecules. J. Biomed. Mater. Res. B 1998, 40, 324–335. [Google Scholar] [CrossRef]
- Rossini, P.; Colpo, P.; Cecone, G. Surface engineering of polymeric films for biomedical applications. Mat. Sci. Eng. C 2003, 23, 353–358. [Google Scholar] [CrossRef]
- Christophorou, L.G.; Olthoff, J.K. Fundamental Electron Interactions with Plasma Processing Gases; Springer: New York, NY, USA, 2004. [Google Scholar]
- Conrads, H.; Schmidt, M. Plasma generation and plasma sources. Plasma Sources Sci. Technol. 2000, 9, 441–454. [Google Scholar] [CrossRef] [Green Version]
- Yameen, B.; khan, H.U.; Knoll, W.; Förch, R.; Jonas, U. Surface initiated polymerization on pulsed plasma deposited polyallylamine: A polymer substrate-independent strategy to soft surfaces with polymer brushes. Macromol. Rapid Commun. 2011, 32, 1735–1740. [Google Scholar] [CrossRef] [PubMed]
- Hook, A.L.; Thissen, H.; Quinton, J.; Voelcker, N.H. Comparison of the binding mode of plasmid DNA to allylamine plasma polymer and poly(ethylene glycol) surfaces. Surf. Sci. 2008, 602, 1883–1891. [Google Scholar] [CrossRef]
- Choukourov, A.; Biederman, H.; Kholodkov, I.; Slavinska, D.; Trchova, M.; Hollander, A. Properties of amine-containing coatings prepared by plasma polymerization. J. Appl. Polym. Sci. 2004, 92, 979–990. [Google Scholar] [CrossRef]
- Ho-Shui-Ling, A.; Bolander, J.; Rustom, L.E.; Johnson, A.W.; Luyten, F.P.; Picart, C. Bone regeneration strategies: Engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials 2018, 180, 143–162. [Google Scholar] [CrossRef]
- Gaelle, A.; Nathalie, D.G.; Rino, M. Incorporation of primary amines via plasma technology on biomaterials. IntechOpen 2015, 10, 59691. [Google Scholar]
- Finke, B.; Hempel, F.; Testrich, H.; Artemenko, A.; Rebl, H.; Kylián, O.; Meichsner, J.; Biederman, H.; Nebe, B.; Weltmann, K.D.; et al. Plasma processes for cell-adhesive titanium surfaces based on nitrogen-containing coatings. Surf. Coat. Technol. 2011, 205, S520–S524. [Google Scholar] [CrossRef]
- Testrich, H.; Rebl, H.; Finke, B.; Hempel, F.; Nebe, B.; Meichsner, J. Aging effects of plasma polymerized ethylenediamine (PPEDA) thin films on cell-adhesive implant coatings. Mater. Sci. Eng. C 2013, 33, 3875–3880. [Google Scholar] [CrossRef] [PubMed]
- Seo, H.S.; Kim, B.H.; Ko, Y.M. Fabrication of anodized titanium with immobilization of hyaluronic acid to improve biological performance. Prog. Org. Coat. 2010, 69, 38–44. [Google Scholar] [CrossRef]
- Heller, M.; Kämmerer, P.W.; Al-Nawas, B.; Luszpinski, M.-A.; Förch, R.; Brieger, J. The effect of extracellular matrix proteins on the cellular response of HUVECS and HOBS after covalent immobilization onto titanium. J. Biomed. Mater. Res. Part A 2015, 103A, 2035–2044. [Google Scholar] [CrossRef] [PubMed]
- Pietro, M.; Federico, M.; Paola, R.; Stefano, C. Surface treatments and functional coatings for biocompatibility improvement and bacterial adhesion reduction in dental implantology. Coatings 2016, 6, 7. [Google Scholar]
- Hartwig, A.; Mulder, M.; Smolders, C.A. Surface amination of poly(acrylonitrile). Adv. Colloid Interface Sci. 1994, 52, 65–78. [Google Scholar] [CrossRef] [Green Version]
- Ciapetti, G.; Ambrosio, L.; Savarino, L.; Granchi, D.; Cenni, E.; Ba ldini, N.; Paqani, S.; Guizzardi, S.; Gausa, F.; Giumti, A. Osteoblast growth and function in porous poly-ε-caprolactone matrices for bone repair: A preliminary study. Biomaterials 2003, 24, 3815–3824. [Google Scholar] [CrossRef]
- Lopez-Perez, P.M.; Marques, A.P.; Silva, R.M.P.D.; Pashkuleva, I.; Reis, R.L. Effect of chitosan membrane surface modification via plasma induced polymerization on the adhesion of osteoblast-like cells. J. Mater. Chem. 2007, 17, 4064–4071. [Google Scholar] [CrossRef] [Green Version]
- Kull, K.R.; Steen, M.L.; Fisher, E.R. Surface modification with nitrogen-containing plasmas to produce hydrophilic, low-fouling membranes. J. Membr. Sci. 2005, 246, 203–215. [Google Scholar] [CrossRef]
- Schmitz, J.P.; Hollinger, J.O. A preliminary study of the osteogenic potential of a biodegradable alloplastic osteoinductive alloimplant. Clin Orthop. 1988, 237, 245–255. [Google Scholar] [CrossRef]
- Jones, A.C.; Arns, C.H.; Hutmacher, D.W.; Milthorpe, B.K.; Sheppard, A.P.; Knackstedt, M.A. The correlation of pore morphology, interconnectivity and physical properties of 3D ceramic scaffolds with bone ingrowth. Biomaterials 2009, 30, 1440–1451. [Google Scholar] [CrossRef]
- Morent, R.; De Geyter, N.; Desmet, T.; Dubruel, P.; Leys, C. Plasma surface modification of biodegradable polymers: A review. Plasma Process. Polym. 2011, 8, 171–190. [Google Scholar] [CrossRef]
- Desmet, T.; Morent, R.; De Geyter, N.; Leys, C.; Schacht, E.; Dubruel, P. Nonthermal plasma technology as a versatile strategy for polymeric biomaterials surface modification: A review. Biomacromolecules 2009, 10, 2351–2378. [Google Scholar] [CrossRef]
- Chu, P.K.; Chen, J.Y.; Wang, L.P.; Huang, N. Plasma-surface modification of biomaterials. Mat. Sci. Eng. R. 2002, 36, 143–206. [Google Scholar] [CrossRef] [Green Version]
- Karande, T.S.; Ong, J.L.; Agrawal, C.M. Diffusion in musculoskeletal tissue engineering scaffolds: Design issues related to porosity, permeability, and nutrient mixing. Ann. Biomed. Eng. 2004, 32, 1728–1743. [Google Scholar] [CrossRef]
Treatment Conditions | Pre-Treatment | Polymerization | Post-Treatment |
---|---|---|---|
Plasma gas Radio Frequency discharge power Deposition time | Argon 100 W 300 s | Monomer-Allylamine 30 W, 50 W, 70 W 300 s | Argon 30 W 60 s |
- | Average Length of Bone-to-Plate Contact Area (mm) | Average Percentage of New Bone Formation (%) |
---|---|---|
Group with Untreated Plates | 6.06 | 39.70 |
Group with Amine Plasma-Treated Plates | 12.18 | 79.76 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, Y.-W.; Jung, S.; Han, J.J.; Park, H.-J.; Kim, R.Y.; Kim, B.-H.; Kook, M.-S. Effectiveness of Surface Treatment with Amine Plasma for Improving the Biocompatibility of Maxillofacial Plates. Materials 2019, 12, 2581. https://doi.org/10.3390/ma12162581
Jeong Y-W, Jung S, Han JJ, Park H-J, Kim RY, Kim B-H, Kook M-S. Effectiveness of Surface Treatment with Amine Plasma for Improving the Biocompatibility of Maxillofacial Plates. Materials. 2019; 12(16):2581. https://doi.org/10.3390/ma12162581
Chicago/Turabian StyleJeong, Yeon-Woo, Seunggon Jung, Jeong Joon Han, Hong-Ju Park, Rok Young Kim, Byung-Hoon Kim, and Min-Suk Kook. 2019. "Effectiveness of Surface Treatment with Amine Plasma for Improving the Biocompatibility of Maxillofacial Plates" Materials 12, no. 16: 2581. https://doi.org/10.3390/ma12162581
APA StyleJeong, Y. -W., Jung, S., Han, J. J., Park, H. -J., Kim, R. Y., Kim, B. -H., & Kook, M. -S. (2019). Effectiveness of Surface Treatment with Amine Plasma for Improving the Biocompatibility of Maxillofacial Plates. Materials, 12(16), 2581. https://doi.org/10.3390/ma12162581