Variability and Performance Study of the Sound Absorption of Used Cigarette Butts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instrumentation for Acoustic Absorption Determination
2.2. Preparation of Samples
- Length 1 (L1): length = 15.13 ± 0.40 mm; diameter = 7.95 ± 0.07 mm.
- Length 2 (L2): length = 20.67 ± 0.22 mm; diameter = 7.64 ± 0.06 mm.
- Length 3 (L3): length = 26.61 ± 0.13 mm; diameter = 7.59 ± 0.04 mm.
- Condition 1 (C1): Smoked cigarette butts without burnt regions. Burnt regions were considered when some hard structure was formed in the cigarette butts due to the burning of a part of the filter.
- Condition 2 (C2): Smoked cigarette butts with burnt regions.
- Condition 3 (C3): Smoked cigarette butts without burnt regions and without the paper that wrapped the filter. The wrapping paper was removed carefully, avoiding loss of the fibrous material of the filter.
- Condition 4 (C4): Unsmoked cigarette butts.
2.3. Statistical Analysis
3. Results and Discussion
3.1. Variability Analysis
3.2. Comparison between Samples
3.3. Analysis of the One-Third Octave Bands’ Absorption Coefficients
4. Conclusions
5. Limitations of the Study and Further Studies
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Attenborough, K.; Ver, I.L. Sound-absorbing materials and sound absorbers. In Noise and Vibration Control Engineering, 2nd ed.; Wiley: New York, NY, USA, 2006; Chapter 8. [Google Scholar]
- Asdrubali, F.; Schiavoni, S.; Horoshenkov, K.V.A. Review of Sustainable Materials for Acoustic Applications. Build. Acoust. 2012, 19, 283–312. [Google Scholar] [CrossRef]
- Attenborough, K.; Bashir, I.; Taherzadeh, S.; Hill, T. Models for acoustical properties of green roof materials. In Proceedings of the Forum Acusticum 2011, Aalborg, Denmark, 27 June–1 July 2011; pp. 863–868. [Google Scholar]
- Iannace, G.; Trematerra, A.; Trematerra, P. Acoustic correction using green material in classrooms located in historical buildings. Acoust. Aust. 2013, 41, 213–218. [Google Scholar]
- D’Alessandro, F.; Asdrubali, F.; Mencarelli, N. Experimental evaluation and modelling of the sound absorption properties of plants for indoor acoustics applications. Build. Environ. 2015, 94, 913–923. [Google Scholar] [CrossRef]
- Glé, P.; Gourdon, E.; Arnaud, L. Acoustical properties of materials made of vegetable particles with several scales of porosity. Appl. Acoust. 2011, 72, 249–259. [Google Scholar] [CrossRef]
- Oldham, D.J.; Egan, C.A.; Cookson, R.D. Sustainable acoustic absorbers from the biomass. Appl. Acoust. 2011, 72, 350–363. [Google Scholar] [CrossRef]
- Berardi, U.; Iannace, G. Acoustical characterization of natural fibers for sound absorption applications. Build. Environ. 2015, 94, 840–852. [Google Scholar] [CrossRef]
- Mamtaz, H.; Fouladi, M.H.; Al-Altabi, M.; Namasivayam, N. Acoustic absorption of natural fiber composites. J. Eng. 2016, 2016. [Google Scholar] [CrossRef]
- Berardi, U.; Iannace, G. Predicting the sound absorption of natural materials: Best-fit inverse laws for the acoustic impedance and the propagation constant. Appl. Acoust. 2017, 115, 131–138. [Google Scholar] [CrossRef]
- Del Rey, R.; Uris, A.; Alba, J.; Candelas, P. Characterization of sheep wool as a sustainable material for acoustic applications. Materials 2017, 10, 1277. [Google Scholar] [CrossRef]
- Maderuelo-Sanz, R.; Barrigón Morillas, J.M.; Gómez Escobar, V. Acoustical performance of loose cork granulates. Eur. J. Wood Wood Prod. 2014, 72, 321–330. [Google Scholar] [CrossRef]
- Martellotta, F.; Cannavale, A.; De Matteis, V.; Ayr, U. Sustainable sound absorbers obtained from olive pruning wastes and chitosan binder. Appl. Acoust. 2018, 141, 71–78. [Google Scholar] [CrossRef]
- Maderuelo-Sanz, R.; Barrigón Morillas, J.M.; Martín Castizo, M.; Gómez Escobar, V.; Rey Gozalo, G. Acoustical performance of porous absorber made from recycled rubber and polyurethane resin. Lat. Am. J. Solids Struct. 2013, 10, 585–600. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.; Mohamed, M.; Al Halo, N.; Benkreira, H. Acoustical properties of novel sound absorbers made from recycled granulates. Appl. Acoust. 2017, 127, 80–88. [Google Scholar] [CrossRef] [Green Version]
- Euromonitor International. Passport: Global Market Information Database. 2016. Available online: http://www.tobaccoatlas.org/ (accessed on 11 June 2019).
- Novotny, T.E.; Zhao, F. Consumption and production waste: Another externality of tobacco use. Tob. Control 1999, 8, 75–80. [Google Scholar] [CrossRef]
- Mackay, J.; Eriksen, M.; Shafey, O. The Tobacco Atlas, 2nd ed.; American Cancer Society: Atlanta, GA, USA, 2000; pp. 32–33. [Google Scholar]
- Novotny, T.E.; Slaugther, E. Tobacco Product Waste: An Environmental Approach to Reduce Tobacco Consumption. Curr. Environ. Health Rep. 2014, 1, 208–216. [Google Scholar] [CrossRef] [Green Version]
- Rath, J.M.; Rubenstein, R.A.; Curry, L.E.; Shank, S.E.; Cartwright, J.C. Cigarette Litter: Smokers’ Attitudes and Behaviors. Int. J. Environ. Res. Public Health 2012, 9, 2189–2203. [Google Scholar] [CrossRef]
- Ariza, E.; Jiménez, J.A.; Sardá, R. Seasonal evolution of beach waste and litter during the bathing season on the Catalan coast. Waste Manag. 2008, 28, 2604–2613. [Google Scholar] [CrossRef]
- Martínez-Ribes, L.; Basterretxea, G.; Palmer, M.; Tintoré, J. Origin and abundance of beach debris in the Balearic Islands. Sci. Mar. 2007, 71, 305–314. [Google Scholar] [CrossRef]
- Moriwaki, H.; Kitajima, S.; Katahira, K. Waste on the roadside, ‘poi-sute’ waste: Its distribution and elution potential of pollutants into environment. Waste Manag. 2009, 29, 1192–1197. [Google Scholar] [CrossRef]
- Slaughter, E.; Gersberg, R.M.; Watanabe, K.; Rudolph, J.; Stransky, C.; Novotny, T.E. Toxicity of cigarette butts, and their chemical components, to marine and freshwater fish. Tob. Control 2011, 20, i25–i29. [Google Scholar] [CrossRef]
- Gong, M.; Khurshid, S.; Poppendiecky, D. What’s in a butt? Environmental contamination from airborne cigarette butt emissions. Integr. Environ. Assess. Manag. 2017, 13, 549–551. [Google Scholar] [CrossRef]
- Register, K.M. Cigarette Butts as Litter- Toxic as Well as Ugly. Bull. Am. Met. Soc. 2000, 25, 23–29. [Google Scholar]
- Micevska, T.; Warne, M.S.T.J.; Pablo, F.; Patra, R. Variation in, and Causes of, Toxicity of Cigarette Butts to a Cladoceran and Microtox. Arch. Environ. Contam. Toxicol. 2006, 50, 205–212. [Google Scholar] [CrossRef]
- Lee, W.; Lee, C.C. Development toxicity of cigarette butts-An underdeveloped issue. Ecotoxicol. Environ. Saf. 2015, 113, 362–368. [Google Scholar] [CrossRef]
- Mohajerani, A.; Kadir, A.A.; Larobina, L. A practical proposal for solving world’s cigarette butt problem: Recycling in fired clay bricks. Waste Manag. 2016, 52, 228–244. [Google Scholar] [CrossRef]
- Lee, M.; Kim, G.-P.; Don Song, H.; Park, S.; Yi, J. Preparation of energy storage material derived from a used cigarette filter for a supercapacitor electrode. Nanotechnology 2014, 25, 345601. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, N.; Qu, C.; Wu, X.; Zhang, J.; Zhang, X. Cigarette butts and their application in corrosion inhibition for N80 Steel at 90 °C in a hydrochloric acid solution. Ind. Eng. Chem. Res. 2010, 49, 3986–3991. [Google Scholar] [CrossRef]
- Murugan, K.; Suresh, U.; Panneerselvam, C.; Rajaganesh, R.; Roni, M.; Aziz, A.T.; Hwang, J.-S.; Sathishkumar, K.; Rajasekar, A.; Kumar, S.; et al. Managing wastes as green resources: Cigarette butt-synthesized pesticides are highly toxic to malaria vectors with little impact on predatory copepods. Environ. Sci. Pollut. Res. 2018, 25, 10456–10470. [Google Scholar] [CrossRef]
- Torkashvand, J.; Farzadkia, M. A systematic review on cigarette butt management as a hazardous waste and prevalent litter: Control and recycling. Environ. Sci. Pollut. Res. 2019, 26, 11618–11630. [Google Scholar] [CrossRef]
- Gómez Escobar, V.; Maderuelo-Sanz, R. Acoustical performance of samples prepared with cigarette butts. Appl. Acoust. 2017, 125, 166–172. [Google Scholar] [CrossRef]
- Maderuelo-Sanz, R.; Gómez Escobar, V.; Meneses-Rodríguez, J.M. Potential use of cigarette filters as sound porous absorber. Appl. Acoust. 2018, 129, 86–91. [Google Scholar] [CrossRef]
- ISO 10534-2. Acoustics: Determination of Sound Absorption Coefficient and Impedance in Impedances Tubes. Part 2: Transfer-Function Method; ISO: Geneva, Switzerland, 1998.
- Cuevas, A.; Febrero, M.; Fraiman, R. An ANOVA test for functional data. Comput. Stat. Data Anal. 2004, 47, 111–122. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: https://www.R-project.org/ (accessed on 11 June 2019).
- Gorecki, T.; Smaga, L. fdANOVA: Analysis of Variance for Univariate and Multivariate Functional Data. R Package Version 0.1.2. 2018. Available online: https://CRAN.R-project.org/package=fdANOVA (accessed on 11 June 2019).
Length (L) | Cigarette Butts Status | |||
---|---|---|---|---|
C1 (Smoked without Burnt) | C2 (Smoked with Burnt) | C3 (Smoked without Burnt without Wrapping Paper) | C4 (Unsmoked with Wrapping Paper) | |
L1 | 20 samples L = 15.4 ± 0.1 mm ϕ = 8.01 ± 0.02 mm ρ = 140 ± 4 kg/m3 por = 0.929 ± 0.003 | -- | -- | 14 samples L = 14.7 ± 0.1 mm ϕ = 7.88 ± 0.01 mm ρ = 97 ± 2 kg/m3 por = 0.931 ± 0.001 |
L2 | 20 samples L = 20.8 ± 0.2 mm ϕ = 7.65 ± 0.07 mm ρ = 118 ± 7 kg/m3 por = 0.935 ± 0.008 | 20 samples L = 20.5 ± 0.2 mm ϕ = 7.63 ± 0.04 mm ρ = 123 ± 5 kg/m3 por = 0.936 ± 0.005 | 10 samples L = 20.9 ± 0.2 mm ϕ = 7.63 ± 0.08 mm ρ = 79 ± 3 kg/m3 por = 0.936 ± 0.010 | -- |
L3 | 20 samples L = 26.6 ± 0.2 mm ϕ = 7.59 ± 0.04 mm ρ = 114 ± 2 kg/m3 por = 0.936 ± 0.005 | -- | -- | -- |
Group | Average | Standard Deviation | Minimum | Maximum |
---|---|---|---|---|
L1–C1 | 2.08 | 2.01 | 0.24 | 8.48 |
L1–C4 | 1.28 | 1.08 | 0.10 | 4.63 |
L2–C1 | 1.80 | 1.49 | 0.35 | 6.61 |
L2–C2 | 3.03 | 2.17 | 0.94 | 8.66 |
L2–C3 | 2.90 | 2.77 | 0.71 | 14.79 |
L3–C1 | 1.37 | 1.53 | 0.26 | 6.41 |
Obtained p-values | ||||||
---|---|---|---|---|---|---|
1/3 Octave Band (Hz) | L1–C1 vs. L2–C1 | L2–C1 vs. L3–C1 | L1–C1 vs. L3–C1 | L2–C1 vs. L2–C2 | L2–C1 vs. L2–C3 | L1–C1 vs. L1–C4 |
500 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
630 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
800 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
1000 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
1250 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
1600 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
2000 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
2500 | <0.001 | 0.26 | <0.001 | <0.001 | <0.001 | <0.001 |
3150 | 0.53 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
4000 | <0.001 | <0.001 | <0.001 | 0.30 | <0.001 | <0.001 |
5000 | <0.001 | <0.01 | <0.001 | 0.49 | <0.001 | <0.001 |
6400 | <0.001 | <0.001 | <0.001 | 0.08 | <0.001 | <0.001 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez Escobar, V.; Rey Gozalo, G.; Pérez, C.J. Variability and Performance Study of the Sound Absorption of Used Cigarette Butts. Materials 2019, 12, 2584. https://doi.org/10.3390/ma12162584
Gómez Escobar V, Rey Gozalo G, Pérez CJ. Variability and Performance Study of the Sound Absorption of Used Cigarette Butts. Materials. 2019; 12(16):2584. https://doi.org/10.3390/ma12162584
Chicago/Turabian StyleGómez Escobar, Valentín, Guillermo Rey Gozalo, and Carlos J. Pérez. 2019. "Variability and Performance Study of the Sound Absorption of Used Cigarette Butts" Materials 12, no. 16: 2584. https://doi.org/10.3390/ma12162584
APA StyleGómez Escobar, V., Rey Gozalo, G., & Pérez, C. J. (2019). Variability and Performance Study of the Sound Absorption of Used Cigarette Butts. Materials, 12(16), 2584. https://doi.org/10.3390/ma12162584