Swelling and Helium Bubble Morphology in a Cryogenically Treated FeCrNi Alloy with Martensitic Transformation and Reversion after Helium Implantation
Abstract
:1. Introduction
2. Experimental
3. Results
3.1. Surface Morphology after Helium Irradiation at 773 K
3.2. Microstructural Observations of γ-Austenite, α′-Martensite, and ε-Martensite
3.3. Irradiation Damage of Cryo-Quenched Fe-15Cr-15Ni Alloy
3.3.1. Helium Bubble Distribution in the Cryo-Quenched Fe-15Cr-15Ni Alloy
3.3.2. Helium Bubble-Induced Swelling and Phase Transformation-Induced Surface Relief
3.3.3. Helium Bubbles along Phase Boundaries
4. Discussion
4.1. Phase Transformation in the Fe-15Cr-15Ni Alloy
4.1.1. Reversion of bcc Martensite in Fe-15Cr-15Ni Alloy
4.1.2. Phases in Cryo-Quenched-Reheated Single Crystal Fe-15Cr-15Ni Alloy
4.2. Helium Bubbles Evolution in fcc, bcc, and hcp Phases
4.2.1. Faceted Bubble Formation
4.2.2. Helium Bubble Size in the bcc and fcc Phases
4.2.3. Phase Transformation Comparison with Helium Bubble Swelling
4.3. Helium Bubbles Evolution along the Phase Boundary with Misfit Dislocations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nastasi, M.; Mayer, J.; Hirvonen, J.K. Ion-Solid Interactions: Fundamentals and Applications; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Zinkle, S.J.; Busby, J.T. Structural materials for fission & fusion energy. Mater. Today 2009, 12, 12–19. [Google Scholar]
- Trinkaus, H.; Singh, B. Helium accumulation in metals during irradiation—Where do we stand? J. Nucl. Mater. 2003, 323, 229–242. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, X.; Wierschke, J.B.; Wang, L. Helium bubble evolution in ion irradiated Al/B4C metal metrix composite. Scr. Mater. 2015, 109, 28–33. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, H.; Kesternich, W.; Ullmaier, H. Helium effects on the creep and fatigue resistance of austenitic stainless steels at high temperatures. Nucl. Eng. Des. Fusion 1985, 2, 65–95. [Google Scholar] [CrossRef]
- Zhuo, M.; Fu, E.; Yan, L.; Wang, Y.; Zhang, Y.; Dickerson, R.; Uberuaga, B.; Misra, A.; Nastasi, M.; Jia, Q. Interface-enhanced defect absorption between epitaxial anatase TiO2 film and single crystal SrTiO3. Scr. Mater. 2011, 65, 807–810. [Google Scholar] [CrossRef]
- Rose, M.; Balogh, A.; Hahn, H. Instability of irradiation induced defects in nanostructured materials. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 1997, 127, 119–122. [Google Scholar] [CrossRef]
- Li, N.; Fu, E.; Wang, H.; Carter, J.; Shao, L.; Maloy, S.; Misra, A.; Zhang, X.; Maloy, S. He ion irradiation damage in Fe/W nanolayer films. J. Nucl. Mater. 2009, 389, 233–238. [Google Scholar] [CrossRef]
- Wei, Q.; Li, N.; Mara, N.; Nastasi, M.; Misra, A. Suppression of irradiation hardening in nanoscale V/Ag multilayers. Acta Mater. 2011, 59, 6331–6340. [Google Scholar] [CrossRef]
- Singh, B.N. Effect of grain size on void formation during high-energy electron irradiation of austenitic stainless steel. Philos. Mag. 1974, 29, 25–42. [Google Scholar] [CrossRef]
- Samaras, M.; Derlet, P.M.; Van Swygenhoven, H.; Victoria, M. Computer Simulation of Displacement Cascades in Nanocrystalline Ni. Phys. Rev. Lett. 2002, 88, 125505. [Google Scholar] [CrossRef]
- Bai, X.M.; Voter, A.F.; Hoagland, R.G.; Nastasi, M.; Uberuaga, B.P.; Bai, X. Efficient Annealing of Radiation Damage Near Grain Boundaries via Interstitial Emission. Science 2010, 327, 1631–1634. [Google Scholar] [CrossRef] [PubMed]
- Misra, A.; Demkowicz, M.J.; Zhang, X.; Hoagland, R.G. The radiation damage tolerance of ultra-high strength nanolayered composites. JOM 2007, 59, 62–65. [Google Scholar] [CrossRef]
- Boatner, L.; Kolopus, J.; Lavrik, N.V.; Phani, P.S. Cryo-quenched Fe-Ni-Cr alloy single crystals: A new decorative steel. J. Alloys Compd. 2017, 691, 666–671. [Google Scholar] [CrossRef]
- Venables, J.A. The martensite transformation in stainless steel. Philos. Mag. 1962, 7, 35–44. [Google Scholar] [CrossRef]
- Lagneborgj, R. The martensite transformation in 18% Cr-8% Ni steels. Acta Met. 1964, 12, 823–843. [Google Scholar] [CrossRef]
- Fujita, H.; Ueda, S. Stacking faults and fcc (γ) → hcp (ε) transformation in 188-type stainless steel. Acta Metall. 1972, 20, 759–767. [Google Scholar] [CrossRef]
- Brooks, J.; Loretto, M.; Smallman, R. In situ observations of the formation of martensite in stainless steel. Acta Met. 1979, 27, 1829–1838. [Google Scholar] [CrossRef]
- Poirier, J.; Dupouy, J. Proceedings of the International Conference on Irradiation Behavior of Metallic Materials for Fast Reactor Core Components; CEA: Ajaccio, France, 1979; p. 425. [Google Scholar]
- Ziegler, J.F.; Ziegler, M.; Biersack, J. SRIM—The stopping and range of ions in matter. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2010, 268, 1818–1823. [Google Scholar] [CrossRef]
- Stoller, R.; Toloczko, M.; Was, G.; Certain, A.; Dwaraknath, S.; Garner, F. On the use of SRIM for computing radiation damage exposure. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2013, 310, 75–80. [Google Scholar] [CrossRef]
- ASTM E521-16: Standard Practice for Investigating the Effects of Neutron Radiation Damage Using Charged-Particle Irradiation; ASTM International: West Conshohocken, PA, USA, 2016.
- Breedis, J.; Robertson, W. The martensitic transformation in single crystals of iron-chromium-nickel alloys. Acta Metall. 1962, 10, 1077–1088. [Google Scholar] [CrossRef]
- Guy, K.B.; Butler, E.P.; West, D.R.F. Reversion of bcc α′ martensite in Fe–Cr–Ni austenitic stainless steels. Met. Sci. 1983, 17, 167–176. [Google Scholar] [CrossRef]
- Smith, H.; West, D.R.F. The reversion of martensite to austenite in certain stainless steels. J. Mater. Sci. 1973, 8, 1413–1420. [Google Scholar] [CrossRef]
- Coleman, T.H.; West, D.R.F. The Reversion of Martensite to Austenite in an Fe–16Cr–12Ni Alloy. Met. Sci. 1975, 9, 342–345. [Google Scholar] [CrossRef]
- Wei, Q.; Li, N.; Sun, K.; Wang, L. The shape of bubbles in He-implanted Cu and Au. Scr. Mater. 2010, 63, 430–433. [Google Scholar] [CrossRef]
- Breedis, J.F.; Kaufman, L. The formation of Hcp and Bcc phases in austenitic iron alloys. Met. Mater. Trans. A 1971, 2, 2359–2371. [Google Scholar] [CrossRef]
- Nelson, R.S.; Mazey, D.J.; Barnes, R.S. The thermal equilibrium shape and size of holes in solids. Philos. Mag. 1965, 11, 91–111. [Google Scholar] [CrossRef]
- Luklinska, Z.; Goodhew, P.; Von Bradsky, G. Helium bubble growth in ferritic stainless steel. J. Nucl. Mater. 1985, 135, 206–214. [Google Scholar] [CrossRef]
- Möslang, A.; Preininger, D. Effect of helium implantation on the mechanical properties and the microstructure of the martensitic 12% Cr-steel 1.4914. J. Nucl. Mater. 1988, 155, 1064–1068. [Google Scholar] [CrossRef]
- Fréchard, S.; Walls, M.; Kociak, M.; Chevalier, J.; Henry, J.; Gorse, D. Study by EELS of helium bubbles in a martensitic steel. J. Nucl. Mater. 2009, 393, 102–107. [Google Scholar] [CrossRef]
- Goodhew, P. Shapes of pores in metals. Met. Sci. 1981, 15, 377–385. [Google Scholar] [CrossRef]
- Johansen, C.G.; Huang, H.; Lu, T.-M. Diffusion and formation energies of adatoms and vacancies on magnesium surfaces. Comput. Mater. Sci. 2009, 47, 121–127. [Google Scholar] [CrossRef]
- Jostsons, A.; Farrell, K. Structural damage and its annealing response in neutron irradiated magnesium. Radiat. Effic. 1972, 15, 217–225. [Google Scholar] [CrossRef]
- Kombaiah, B.; Edmondson, P.; Wang, Y.; Boatner, L.; Zhang, Y. Mechanisms of radiation-induced segregation around He bubbles in a Fe-Cr-Ni crystal. J. Nucl. Mater. 2019, 514, 139–147. [Google Scholar] [CrossRef]
- Singh, B.; Trinkaus, H. An analysis of the bubble formation behaviour under different experimental conditions. J. Nucl. Mater. 1992, 186, 153–165. [Google Scholar] [CrossRef]
- Kalin, B.; Chernov, I.; Kalashnikov, A.; Esaulov, M. Characteristic features of the interaction of implanted helium with interstitial and substitution elements in nickel and iron. Vopr. At. Nauk. Tekh. Ser. Fiz. Radiats Povrezhden. Radiats Mater. 1997, 2, 53–79. [Google Scholar]
- Zhang, Y. Helium Migration in Iron. Master’s Thesis, University of Cambridge, Cambridge, UK, 2004. [Google Scholar]
- Kalin, B.A.; Chernov, I.I.; Kalashnikov, A.N.; Binyukova, S.Y.; Timofeev, A.A.; Dedyurin, A.I. Effect of Doping on Helium Behavior and Bubble Structure Development in Nickel and Vanadium Alloys. AT Energy 2002, 92, 50–56. [Google Scholar] [CrossRef]
- Lane, P.L.; Goodhew, P.J. Helium bubble nucleation at grain boundaries. Philos. Mag. A 1983, 48, 965–986. [Google Scholar] [CrossRef]
- Singh, B.; Leffers, T.; Green, W.; Victoria, M. Nucleation of helium bubbles on dislocations, dislocation networks and dislocations in grain boundaries during 600 MeV proton irradiation of aluminium. J. Nucl. Mater. 1984, 125, 287–297. [Google Scholar] [CrossRef]
- Di, Z.; Bai, X.-M.; Wei, Q.; Won, J.; Hoagland, R.G.; Wang, Y.; Misra, A.; Uberuaga, B.P.; Nastasi, M. Tunable helium bubble superlattice ordered by screw dislocation network. Phys. Rev. B 2011, 84, 052101. [Google Scholar] [CrossRef]
- Stewart, D.; Osetskiy, Y.; Stoller, R. Atomistic studies of formation and diffusion of helium clusters and bubbles in BCC iron. J. Nucl. Mater. 2011, 417, 1110–1114. [Google Scholar] [CrossRef]
- Shu, X.; Tao, P.; Li, X.; Yu, Y. Helium diffusion in tungsten: A molecular dynamics study. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2013, 303, 84–86. [Google Scholar] [CrossRef]
- Raineri, V.; Coffa, S.; Saggio, M.; Frisina, F.; Rimini, E. Radiation damage–He interaction in He implanted Si during bubble formation and their evolution in voids. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 1999, 147, 292–297. [Google Scholar] [CrossRef]
- Wang, X.; Yan, Q.; Was, G.S.; Wang, L. Void swelling in ferritic-martensitic steels under high dose ion irradiation: Exploring possible contributions to swelling resistance. Scr. Mater. 2016, 112, 9–14. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Boatner, L.; Zhang, Y.; Chen, D.; Wang, Y.; Wang, L. Swelling and Helium Bubble Morphology in a Cryogenically Treated FeCrNi Alloy with Martensitic Transformation and Reversion after Helium Implantation. Materials 2019, 12, 2821. https://doi.org/10.3390/ma12172821
Zhang F, Boatner L, Zhang Y, Chen D, Wang Y, Wang L. Swelling and Helium Bubble Morphology in a Cryogenically Treated FeCrNi Alloy with Martensitic Transformation and Reversion after Helium Implantation. Materials. 2019; 12(17):2821. https://doi.org/10.3390/ma12172821
Chicago/Turabian StyleZhang, Feifei, Lynn Boatner, Yanwen Zhang, Di Chen, Yongqiang Wang, and Lumin Wang. 2019. "Swelling and Helium Bubble Morphology in a Cryogenically Treated FeCrNi Alloy with Martensitic Transformation and Reversion after Helium Implantation" Materials 12, no. 17: 2821. https://doi.org/10.3390/ma12172821
APA StyleZhang, F., Boatner, L., Zhang, Y., Chen, D., Wang, Y., & Wang, L. (2019). Swelling and Helium Bubble Morphology in a Cryogenically Treated FeCrNi Alloy with Martensitic Transformation and Reversion after Helium Implantation. Materials, 12(17), 2821. https://doi.org/10.3390/ma12172821