Next Issue
Volume 12, September-2
Previous Issue
Volume 12, August-2
 
 
materials-logo

Journal Browser

Journal Browser

Materials, Volume 12, Issue 17 (September-1 2019) – 194 articles

Cover Story (view full-size image): Despite the great advances that the tissue engineering field has experienced over the last decades, the amount of engineered tissues that have reached a stage of clinical trial is limited. The lack of vascularization represents a main impediment to this end. Bioprinting appears as an excellent technique for the fabrication of vascular templates that will develop in vitro together with the target tissue. This review provides a comprehensive background to the fields of vascularization and bioprinting, providing details on cell sources, materials and strategies. View this paper.
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
27 pages, 18123 KiB  
Article
Comparative Analysis of the Corrosion Resistance of Titanium Alloys Intended to Come into Direct or Prolonged Contact with Live Tissues
by Florina Ionescu, Lucien Reclaru, Lavinia Cosmina Ardelean and Andreas Blatter
Materials 2019, 12(17), 2841; https://doi.org/10.3390/ma12172841 - 3 Sep 2019
Cited by 11 | Viewed by 4579
Abstract
The evaluation of the biological safety and degradation of materials is quite important for risk assessment in various biomedical applications. In this study, two procedures were followed to characterize the corrosion resistance of different Ti-based alloys. The first one consisted of performing specific [...] Read more.
The evaluation of the biological safety and degradation of materials is quite important for risk assessment in various biomedical applications. In this study, two procedures were followed to characterize the corrosion resistance of different Ti-based alloys. The first one consisted of performing specific electrochemical tests (open circuit potential, linear resistance polarization, Tafel plots, potentiodynamic polarization) in order to highlight their behavior to the general and localized corrosion. The static and dynamic fatigue cycles combined with crevice corrosion conducted on a new prototype have completed the study. The second procedure followed was a cations extraction investigation (by inductively coupled plasma mass spectrometry) in order to verify the ionic permeability of the oxides layers formed on the surfaces. Optical and scanning electron microscopy were used for surface analysis. It was noticed that in these two electrolytes, the bulk Ti-based alloys presented an almost similar general corrosion behavior. The small differences of behavior for Ti6Al4V scaffolds were correlated to the surface oxidation and roughness (owing to the selective laser melting process). The Ti alloys presented no traces of localized corrosion at the end of the test. The fatigue cycles revealed that a strong and adhesive oxides film was formed during the static cycles (difficult to remove even during the depassivation steps). The concentration of cations released was at the detection limit, revealing very good passivation films, in adequacy with the all the other results. Full article
(This article belongs to the Special Issue Advances in Alloys, Ceramics and Polymers Used in Dentistry)
Show Figures

Figure 1

18 pages, 5075 KiB  
Review
Pathways to Tailor Photocatalytic Performance of TiO2 Thin Films Deposited by Reactive Magnetron Sputtering
by Alexander Vahl, Salih Veziroglu, Bodo Henkel, Thomas Strunskus, Oleksandr Polonskyi, Oral Cenk Aktas and Franz Faupel
Materials 2019, 12(17), 2840; https://doi.org/10.3390/ma12172840 - 3 Sep 2019
Cited by 68 | Viewed by 6453
Abstract
TiO2 thin films are used extensively for a broad range of applications including environmental remediation, self-cleaning technologies (windows, building exteriors, and textiles), water splitting, antibacterial, and biomedical surfaces. While a broad range of methods such as wet-chemical synthesis techniques, chemical vapor deposition [...] Read more.
TiO2 thin films are used extensively for a broad range of applications including environmental remediation, self-cleaning technologies (windows, building exteriors, and textiles), water splitting, antibacterial, and biomedical surfaces. While a broad range of methods such as wet-chemical synthesis techniques, chemical vapor deposition (CVD), and physical vapor deposition (PVD) have been developed for preparation of TiO2 thin films, PVD techniques allow a good control of the homogeneity and thickness as well as provide a good film adhesion. On the other hand, the choice of the PVD technique enormously influences the photocatalytic performance of the TiO2 layer to be deposited. Three important parameters play an important role on the photocatalytic performance of TiO2 thin films: first, the different pathways in crystallization (nucleation and growth); second, anatase/rutile formation; and third, surface area at the interface to the reactants. This study aims to provide a review regarding some strategies developed by our research group in recent years to improve the photocatalytic performance of TiO2 thin films. An innovative approach, which uses thermally induced nanocrack networks as an effective tool to enhance the photocatalytic performance of sputter deposited TiO2 thin films, is presented. Plasmonic and non-plasmonic enhancement of photocatalytic performance by decorating TiO2 thin films with metallic nanostructures are also briefly discussed by case studies. In addition to remediation applications, a new approach, which utilizes highly active photocatalytic TiO2 thin film for micro- and nanostructuring, is also presented. Full article
(This article belongs to the Special Issue Sputtering Technologies for Growth of Advanced Thin Film)
Show Figures

Graphical abstract

20 pages, 16260 KiB  
Article
Microfluidics as a Platform for the Analysis of 3D Printing Problems
by Rui Mendes, Paola Fanzio, Laura Campo-Deaño and Francisco J. Galindo-Rosales
Materials 2019, 12(17), 2839; https://doi.org/10.3390/ma12172839 - 3 Sep 2019
Cited by 11 | Viewed by 4994
Abstract
Fused Filament Fabrication is an extrusion deposition technique in which a thermoplastic filament is melted, pushed through a nozzle and deposited to build, layer-by-layer, custom 3D geometries. Despite being one of the most widely used techniques in 3D printing, there are still some [...] Read more.
Fused Filament Fabrication is an extrusion deposition technique in which a thermoplastic filament is melted, pushed through a nozzle and deposited to build, layer-by-layer, custom 3D geometries. Despite being one of the most widely used techniques in 3D printing, there are still some challenges to be addressed. One of them is the accurate control of the extrusion flow. It has been shown that this is affected by a reflux upstream the nozzle. Numerical models have been proposed for the explanation of this back-flow. However, it is not possible to have optical access to the melting chamber in order to confirm the actual behavior of this annular meniscus. Thus, microfluidics seems to be an excellent platform to tackle this fluid flow problem. In this work, a microfluidic device mimicking the 3D printing nozzle was developed, to study the complex fluid-flow behavior inside it. The principal aim was to investigate the presence of the mentioned back-flow upstream the nozzle contraction. As the microfluidic chip was fabricated by means of soft-lithography, the use of polymer melts was restricted due to technical issues. Thus, the working fluids consisted of two aqueous polymer solutions that allowed replicating the printing flow conditions in terms of Elasticity number and to develop a D e R e flow map. The results demonstrate that the presence of upstream vortices, due to the elasticity of the fluid, is responsible for the back-flow problem. Full article
(This article belongs to the Special Issue Complex Flow Dynamics at Microscale)
Show Figures

Graphical abstract

14 pages, 8348 KiB  
Article
The Influence of Fluidized Bed Combustion Fly Ash on the Phase Composition and Microstructure of Cement Paste
by Michał A. Glinicki, Daria Jóźwiak-Niedźwiedzka and Mariusz Dąbrowski
Materials 2019, 12(17), 2838; https://doi.org/10.3390/ma12172838 - 3 Sep 2019
Cited by 21 | Viewed by 3321
Abstract
Fly ashes from coal combustion in circulating fluidized bed boilers in three power plants were tested as a potential additive to cement binder in concrete. The phase composition and microstructure of cement pastes containing fluidized bed fly ash was studied. The fractions of [...] Read more.
Fly ashes from coal combustion in circulating fluidized bed boilers in three power plants were tested as a potential additive to cement binder in concrete. The phase composition and microstructure of cement pastes containing fluidized bed fly ash was studied. The fractions of cement substitution with fluidized bed fly ash were 20% and 30% by weight. X-ray diffraction (XRD) tests and thermal analyses (derivative thermogravimetry (DTG), differential thermal analysis (DTA) and thermogravimetry (TG)) were performed on ash specimens and on hardened cement paste specimens matured in water for up to 400 days. Quantitative evaluation of the phase composition as a function of fluidized bed fly ash content revealed significant changes in portlandite content and only moderate changes in the content of ettringite. Full article
(This article belongs to the Special Issue Supplementary Cementitious Materials in Concrete)
Show Figures

Figure 1

15 pages, 3651 KiB  
Article
Effect of Water on the Dynamic Tensile Mechanical Properties of Calcium Silicate Hydrate: Based on Molecular Dynamics Simulation
by Jikai Zhou and Yuanzhi Liang
Materials 2019, 12(17), 2837; https://doi.org/10.3390/ma12172837 - 3 Sep 2019
Cited by 30 | Viewed by 3536
Abstract
To study the effect of water on the dynamic mechanical properties of calcium silicate hydrate (C–S–H) at the atomic scale, the molecular dynamics simulations were performed in uniaxial tension with different strain rates for C–S–H with a degree of saturation from 0% to [...] Read more.
To study the effect of water on the dynamic mechanical properties of calcium silicate hydrate (C–S–H) at the atomic scale, the molecular dynamics simulations were performed in uniaxial tension with different strain rates for C–S–H with a degree of saturation from 0% to 100%. Our calculations demonstrate that the dynamic tensile mechanical properties of C–S–H decrease with increasing water content and increase with increasing strain rates. With an increase in the degree of saturation, the strain rate sensitivity of C–S–H tends to increase. According to Morse potential function, the tensile stress-strain relationship curves of C–S–H are decomposed and fitted, and the dynamic tensile constitutive relationship of C–S–H considering the effect of water content is proposed. This reveals the strain rate effect of the cementitious materials with different water content from molecular insights, and the dynamic constitutive relationship obtained in this paper is necessary to the modelling of cementitious materials at the meso-scale. Full article
(This article belongs to the Special Issue Molecular Dynamics in Nanomaterials and Nanofluids)
Show Figures

Figure 1

18 pages, 4875 KiB  
Article
PDMS-PMOXA-Nanoparticles Featuring a Cathepsin B-Triggered Release Mechanism
by Daniel Ehrsam, Fabiola Porta, Janine Hussner, Isabell Seibert and Henriette E Meyer zu Schwabedissen
Materials 2019, 12(17), 2836; https://doi.org/10.3390/ma12172836 - 3 Sep 2019
Cited by 8 | Viewed by 3571
Abstract
Background: It was our intention to develop cathepsin B-sensitive nanoparticles for tumor-site-directed release. These nanoparticles should be able to release their payload as close to the tumor site with a decrease of off-target effects in mind. Cathepsin B, a lysosomal cysteine protease, is [...] Read more.
Background: It was our intention to develop cathepsin B-sensitive nanoparticles for tumor-site-directed release. These nanoparticles should be able to release their payload as close to the tumor site with a decrease of off-target effects in mind. Cathepsin B, a lysosomal cysteine protease, is associated with premalignant lesions and invasive stages of cancer. Previous studies have shown cathepsin B in lysosomes and in the extracellular matrix. Therefore, this enzyme qualifies as a trigger for such an approach. Methods: Poly(dimethylsiloxane)-b-poly(methyloxazoline) (PDMS-PMOXA) nanoparticles loaded with paclitaxel were formed by a thin-film technique and standard coupling reactions were used for surface modifications. Despite the controlled release mechanism, the physical properties of the herein created nanoparticles were described. To characterize potential in vitro model systems, quantitative polymerase chain reaction and common bioanalytical methods were employed. Conclusions: Stable paclitaxel-loaded nanoparticles with cathepsin B digestible peptide were formed and tested on the ovarian cancer cell line OVCAR-3. These nanoparticles exerted a pharmacological effect on the tumor cells suggesting a release of the payload. Full article
Show Figures

Figure 1

14 pages, 5129 KiB  
Article
Preparation and Tribological Properties of Carbon-Coated WS2 Nanosheets
by Zheng Li, Fanshan Meng, Haohao Ding, Wenjian Wang and Qiyue Liu
Materials 2019, 12(17), 2835; https://doi.org/10.3390/ma12172835 - 3 Sep 2019
Cited by 7 | Viewed by 3061
Abstract
WS2-C is produced from a hydrothermal reaction, in which WS2 nano-sheets are coated with carbon, using glucose as the carbon source. In order to investigate the tribological properties of WS2-C as a lubricant additive, WS2-C was [...] Read more.
WS2-C is produced from a hydrothermal reaction, in which WS2 nano-sheets are coated with carbon, using glucose as the carbon source. In order to investigate the tribological properties of WS2-C as a lubricant additive, WS2-C was modified by surfactant Span80, and friction tests were carried out on an MRS-10A four-ball friction and wear tester. The results show that Span80 can promote the dispersibility of WS2-C effectively in base oil. Adding an appropriate concentration of WS2-C can improve the anti-wear and anti-friction performance of the base oil. The friction coefficient reached its lowest point upon adding 0.1 wt % WS2-C, reduced by 16.7% compared to the base oil. Meanwhile, the wear scar diameter reached its minimum with 0.15 wt % WS2, decreasing by 26.45%. Moreover, at this concentration, the depth and width of the groove and the surface roughness on the wear scar achieved their minimum. It is concluded that WS2-C dispersed in oil could enter friction pairs to avoid their direct contact, thereby effectively reducing friction and wear. At the same time, WS2-C reacts with the friction matrix material to form a protective film, composed of C, Fe2O3, FeSO4, WO3, and WS2, repairing the worn surface. Full article
Show Figures

Figure 1

20 pages, 4780 KiB  
Article
3D Superparamagnetic Scaffolds for Bone Mineralization under Static Magnetic Field Stimulation
by Irina Alexandra Paun, Bogdan Stefanita Calin, Cosmin Catalin Mustaciosu, Mona Mihailescu, Antoniu Moldovan, Ovidiu Crisan, Aurel Leca and Catalin Romeo Luculescu
Materials 2019, 12(17), 2834; https://doi.org/10.3390/ma12172834 - 3 Sep 2019
Cited by 17 | Viewed by 3661
Abstract
We reported on three-dimensional (3D) superparamagnetic scaffolds that enhanced the mineralization of magnetic nanoparticle-free osteoblast cells. The scaffolds were fabricated with submicronic resolution by laser direct writing via two photons polymerization of Ormocore/magnetic nanoparticles (MNPs) composites and possessed complex and reproducible architectures. MNPs [...] Read more.
We reported on three-dimensional (3D) superparamagnetic scaffolds that enhanced the mineralization of magnetic nanoparticle-free osteoblast cells. The scaffolds were fabricated with submicronic resolution by laser direct writing via two photons polymerization of Ormocore/magnetic nanoparticles (MNPs) composites and possessed complex and reproducible architectures. MNPs with a diameter of 4.9 ± 1.5 nm and saturation magnetization of 30 emu/g were added to Ormocore, in concentrations of 0, 2 and 4 mg/mL. The homogenous distribution and the concentration of the MNPs from the unpolymerized Ormocore/MNPs composite were preserved after the photopolymerization process. The MNPs in the scaffolds retained their superparamagnetic behavior. The specific magnetizations of the scaffolds with 2 and 4 mg/mL MNPs concentrations were of 14 emu/g and 17 emu/g, respectively. The MNPs reduced the shrinkage of the structures from 80.2 ± 5.3% for scaffolds without MNPs to 20.7 ± 4.7% for scaffolds with 4 mg/mL MNPs. Osteoblast cells seeded on scaffolds exposed to static magnetic field of 1.3 T deformed the regular architecture of the scaffolds and evoked faster mineralization in comparison to unstimulated samples. Scaffolds deformation and extracellular matrix mineralization under static magnetic field (SMF) exposure increased with increasing MNPs concentration. The results are discussed in the frame of gradient magnetic fields of ~3 × 10−4 T/m generated by MNPs over the cells bodies. Full article
(This article belongs to the Special Issue Biomaterials and Implant Biocompatibility)
Show Figures

Graphical abstract

14 pages, 3986 KiB  
Article
Polyamide 11/Poly(butylene succinate) Bio-Based Polymer Blends
by Maria Laura Di Lorenzo, Alessandra Longo and René Androsch
Materials 2019, 12(17), 2833; https://doi.org/10.3390/ma12172833 - 3 Sep 2019
Cited by 24 | Viewed by 5250
Abstract
The manuscript details the preparation and characterization of binary blends of polyamide 11 (PA 11) and poly(butylene succinate) (PBS), with PA 11 as the major component. The blends are fully bio-based, since both components are produced from renewable resources. In addition, PBS is [...] Read more.
The manuscript details the preparation and characterization of binary blends of polyamide 11 (PA 11) and poly(butylene succinate) (PBS), with PA 11 as the major component. The blends are fully bio-based, since both components are produced from renewable resources. In addition, PBS is also biodegradable and compostable, contrarily to PA 11. In the analyzed composition range (up to 40 m% PBS), the two polymers are not miscible, and the blends display two separate glass transitions. The PA 11/PBS blends exhibit a droplet-matrix morphology, with uniform dispersion within the matrix, and some interfacial adhesion between the matrix and the dispersed droplets. Infrared spectroscopy indicates the possible interaction between the hydrogens of the amide groups of PA 11 chains and the carbonyl groups of PBS, which provides the compatibilization of the components. The analyzed blends show mechanical properties that are comparable to neat PA 11, with the benefit of reduced material costs attained by addition of biodegradable PBS. Full article
(This article belongs to the Special Issue Recent Advances in Multicomponent Polymer Systems)
Show Figures

Graphical abstract

18 pages, 4320 KiB  
Article
Diferrocenyl Thioketone: Reactions with (Bisphosphane)Pt(0) Complexes—Electrochemical and Computational Studies
by Sebastian Gröber, Piotr Matczak, Sławomir Domagała, Thomas Weisheit, Helmar Görls, Annika Düver, Grzegorz Mlostoń and Wolfgang Weigand
Materials 2019, 12(17), 2832; https://doi.org/10.3390/ma12172832 - 3 Sep 2019
Cited by 4 | Viewed by 3352
Abstract
Diferrocenyl thioketone reacts smoothly with (bisphosphane)Pt(0) complexes in toluene solution at room temperature yielding 1:1 adducts identified as ferrocenyl (Fc) functionalized platinathiiranes. Their structures were unambiguously confirmed by means of spectroscopic methods as well as by X-ray diffraction analysis. A unique, ferrocene-rich platinathiirane, [...] Read more.
Diferrocenyl thioketone reacts smoothly with (bisphosphane)Pt(0) complexes in toluene solution at room temperature yielding 1:1 adducts identified as ferrocenyl (Fc) functionalized platinathiiranes. Their structures were unambiguously confirmed by means of spectroscopic methods as well as by X-ray diffraction analysis. A unique, ferrocene-rich platinathiirane, bearing three Fc-units, was prepared starting with [bis(diphenylphosphino)ferrocene] Pt(0(η2-norbornene). For comparison, a similar platinathiirane with one Fc-unit was obtained from the reaction of the latter complex with thiobenzophenone. Quantum-chemical calculations were carried out to describe the bonding pattern and frontier molecular orbitals of the ferrocene-rich platinathiirane complexes. These calculations confirmed that the C=S bond loses its formally double-bond character upon complexation (bisphosphane)Pt(0). Cyclic voltammetry measurements were performed to characterize the obtained platinathiiranes in CH2Cl2 solutions. For comparison, the cyclic voltammogram for diferrocenyl thioketoneas a mixed-valent (FeII-FeIII) compound was also recorded and analyzed. The results point out to a diffusion controlled electrode process in case of differocenyl thioketone and mixed diffusion and adsorption controlled electrode process in the case of the studied platinathiiranes. Full article
(This article belongs to the Special Issue Current Problems of the Organic Chemistry of Sulfur and Selenium)
Show Figures

Graphical abstract

10 pages, 1859 KiB  
Article
Improvement of Adhesive Wear Behavior by Variable Heat Treatment of a Tool Steel for Sheet Metal Forming
by Alejandro Gonzalez-Pociño, Florentino Alvarez-Antolin and Juan Asensio-Lozano
Materials 2019, 12(17), 2831; https://doi.org/10.3390/ma12172831 - 3 Sep 2019
Cited by 14 | Viewed by 2456
Abstract
Vanadis 10 steel is a powder metallurgy (PM) processed tool steel. It is a ledeburitic steel with 8% Cr and 10% V. By deliberately varying the process parameters related to the quenching, tempering, and nitriding of these steels, the aim of this study [...] Read more.
Vanadis 10 steel is a powder metallurgy (PM) processed tool steel. It is a ledeburitic steel with 8% Cr and 10% V. By deliberately varying the process parameters related to the quenching, tempering, and nitriding of these steels, the aim of this study is to determine which of these parameters have a significant influence on its adhesive wear resistance. The research methodology employed was a Design of Experiments (DoE) with six factors and two levels for each factor. The tempering temperature, number of temperings, and carrying out of a thermochemical nitriding treatment were found to have a significant effect. To increase adhesive wear resistance, austenitization at 1100 °C with air cooling is recommended, followed by three temperings at 500 °C and a subsequent nitriding treatment. It should be noted that the quench cooling medium does not have a significant influence on wear resistance. Furthermore, (Fe,Cr)7C3 (M7C3 carbides) are transformed into carbonitrides during nitriding. However, (Fe,V)C (MC carbides) are not affected by this nitriding process. Full article
(This article belongs to the Special Issue Microstructure and Mechanical Properties of Steels)
Show Figures

Figure 1

12 pages, 1841 KiB  
Article
Zeolite Nanocrystals Protect the Performance of Organic Additives and Adsorb Acid Compounds during Lubricants Oxidation
by Moussa Zaarour, Hussein El Siblani, Nicolas Arnault, Philippe Boullay and Svetlana Mintova
Materials 2019, 12(17), 2830; https://doi.org/10.3390/ma12172830 - 3 Sep 2019
Cited by 6 | Viewed by 2821
Abstract
Zeolite nanocrystals were used as proactive agents to extend the lifetime of commercial lubricants by protecting the performance additives from depletion and adsorbing the acid formed during oxidation. The nanosized zeolites were introduced into four lubricants and subjected to oxidation (90 °C and [...] Read more.
Zeolite nanocrystals were used as proactive agents to extend the lifetime of commercial lubricants by protecting the performance additives from depletion and adsorbing the acid formed during oxidation. The nanosized zeolites were introduced into four lubricants and subjected to oxidation (90 °C and 150 °C). A strong affinity towards protection of zinc dialkyldithiophosphate (ZDDP) additive was demonstrated by 31P NMR (nuclear magnetic resonance) and FTIR (fourier-transform infrared) spectroscopy even after heating at 150 °C for 24 h. FTIR profiles of lubricants aged in the presence of LTL (Linde Type L zeolite) showed lower oxidation degree while the formed oxidation products (aldehydes, ketones, and acids) were adsorbed on the zeolite crystals acting as scavengers. Full article
(This article belongs to the Collection Porous Materials and Nanozeolites)
Show Figures

Graphical abstract

26 pages, 8537 KiB  
Article
Vibration Characteristics Analysis of Moderately Thick Laminated Composite Plates with Arbitrary Boundary Conditions
by Zechang Xue, Qiuhong Li, Wenhao Huang, Yongxin Guo and Jiufa Wang
Materials 2019, 12(17), 2829; https://doi.org/10.3390/ma12172829 - 3 Sep 2019
Cited by 12 | Viewed by 3548
Abstract
In this study, an improved Fourier series method is presented for the vibration modeling and analysis of moderately thick laminated composite plates with arbitrary boundary conditions, in which the vibration displacements are sought as the linear combination of a double Fourier cosine series [...] Read more.
In this study, an improved Fourier series method is presented for the vibration modeling and analysis of moderately thick laminated composite plates with arbitrary boundary conditions, in which the vibration displacements are sought as the linear combination of a double Fourier cosine series and auxiliary series functions. The vibration model was established using the Hamilton energy principle. To study the vibration characteristics of laminated composite plates more comprehensively, firstly, the accuracy of the current results were validated via comparison with previous results and finite element method data. A parametric study was conducted on the effects of several key parameters, such as the h/b ratio, orientation and number of layers. In this section, both solutions are applicable to various combinations of boundary constraints, including classical boundary conditions and elastic-supported boundary conditions. Secondly, in order to identify the action position of vibration and the transmission of vibration energy, the response analysis of laminated plates was studied, and the power flow field for laminated plates was analyzed. Finally, a modal test was introduced to further verify the accuracy of the method in this paper. Full article
Show Figures

Figure 1

13 pages, 6703 KiB  
Article
Effect of Multi-Source Ultrasonic on Segregation of Cu Elements in Large Al–Cu Alloy Cast Ingot
by Hao Peng, Ruiqing Li, Xiaoqian Li, Shan Ding, Mengjun Chang, Liqing Liao, Yun Zhang and Pinghu Chen
Materials 2019, 12(17), 2828; https://doi.org/10.3390/ma12172828 - 3 Sep 2019
Cited by 16 | Viewed by 3192
Abstract
The structure and composition of large-scale Al–Cu alloy ingots are inhomogeneous, and the segregation of (especially) elemental Cu negatively affects the uniformity and stability of the subsequent components. In this work, four ultrasonic generators were used to manipulate solidification/microstructures of cylindrical Al–Cu ingots [...] Read more.
The structure and composition of large-scale Al–Cu alloy ingots are inhomogeneous, and the segregation of (especially) elemental Cu negatively affects the uniformity and stability of the subsequent components. In this work, four ultrasonic generators were used to manipulate solidification/microstructures of cylindrical Al–Cu ingots (1250 mm in diameter; 3500 mm in length). The influence of ultrasonic configuration on both solidification microstructures and solute macrosegregation was investigated by changing the position parameters of generators for a fixed power. The results revealed that when the ultrasound is applied close to the center (I) from the 1/2 radius (II), the grain structure of the center undergoes significant refinement, degree of positive segregation in the center can be reduced, segregation index decreased from 0.2 to 0.15, and range of positive segregation in the center decreased from 200 to 150 mm. The segregation of elemental Cu was weakened by the combined effects of the ultrasound on the flow, heat transfer, and grain movement. Full article
Show Figures

Figure 1

12 pages, 1584 KiB  
Article
Neural Network Modelling of Track Profile in Cold Spray Additive Manufacturing
by Daiki Ikeuchi, Alejandro Vargas-Uscategui, Xiaofeng Wu and Peter C. King
Materials 2019, 12(17), 2827; https://doi.org/10.3390/ma12172827 - 2 Sep 2019
Cited by 38 | Viewed by 7236
Abstract
Cold spray additive manufacturing is an emerging technology that offers the ability to deposit oxygen-sensitive materials and to manufacture large components in the solid state. For further development of the technology, the geometric control of cold sprayed components is fundamental but not yet [...] Read more.
Cold spray additive manufacturing is an emerging technology that offers the ability to deposit oxygen-sensitive materials and to manufacture large components in the solid state. For further development of the technology, the geometric control of cold sprayed components is fundamental but not yet fully matured. This study presents a neural network predictive modelling of a single-track profile in cold spray additive manufacturing to address the problem. In contrast to previous studies focusing only on key geometric feature predictions, the neural network model was employed to demonstrate its capability of predicting complete track profiles at both normal and off-normal spray angles, resulting in a mean absolute error of 8.3%. We also compared the track profile modelling results against the previously proposed Gaussian model and showed that the neural network model provided comparable predictive accuracy, even outperforming in the predictions at cold spray profile edges. The results indicate that a neural network modelling approach is well suited to cold spray profile prediction and may be used to improve geometric control during additive manufacturing with an appropriate process planning algorithm. Full article
(This article belongs to the Special Issue Advances in Thermal Spray Technology)
Show Figures

Graphical abstract

15 pages, 2613 KiB  
Article
Inverse Model for the Control of Induction Heat Treatments
by Mohammad Zhian Asadzadeh, Peter Raninger, Petri Prevedel, Werner Ecker and Manfred Mücke
Materials 2019, 12(17), 2826; https://doi.org/10.3390/ma12172826 - 2 Sep 2019
Cited by 13 | Viewed by 2733
Abstract
In this work, we present and test an approach based on an inverse model applicable to the control of induction heat treatments. The inverse model is comprised of a simplified analytical forward model trained with experiments to predict and control the temperature of [...] Read more.
In this work, we present and test an approach based on an inverse model applicable to the control of induction heat treatments. The inverse model is comprised of a simplified analytical forward model trained with experiments to predict and control the temperature of a location in a cylindrical sample starting from any initial temperature. We solve the coupled nonlinear electromagnetic-thermal problem, which contains a temperature dependent parameter α to correct the electromagnetic field on the surface of a cylinder, and as a result effectively the modeled temperature elsewhere in the sample. A calibrated model to the measurement data applied with the process information such as the operating power level, current, frequency, and temperature provides the basic ingredients to construct an inverse model toolbox, which finally enables us to conduct experiments with more specific goals. The input set values of the power supply, i.e., the power levels in the test rig control system, are determined within an iterative framework to reach specific target temperatures in prescribed times. We verify the concept on an induction heating test rig and provide two examples to illustrate the approach. The advantages of the method lie in its simplicity, computationally cost effectiveness and independence of a prior knowledge of the internal structure of power supplies. Full article
Show Figures

Figure 1

12 pages, 7873 KiB  
Article
Effect of Particle Size on Current-Carrying Friction and Wear Properties of Copper-Graphite Composites by Spark Plasma Sintering
by Zhenghai Yang, Yuexin Ge, Xu Zhang, Bao Shangguan, Yongzhen Zhang and Yao Wang
Materials 2019, 12(17), 2825; https://doi.org/10.3390/ma12172825 - 2 Sep 2019
Cited by 10 | Viewed by 2866
Abstract
Copper-graphite composites were prepared by spark plasma sintering (SPS) with copper powder and copper-coated graphite powder. The effect of particle size of raw material powder on the current-carrying friction properties of copper-graphite composites was studied. The results show that the friction coefficient of [...] Read more.
Copper-graphite composites were prepared by spark plasma sintering (SPS) with copper powder and copper-coated graphite powder. The effect of particle size of raw material powder on the current-carrying friction properties of copper-graphite composites was studied. The results show that the friction coefficient of the composites decreased with the decrease of the particle size of copper-coated graphite powder, the friction coefficient of the composites increased with the decrease of the particle size of the copper powder, the wear rate of the composites increased with the decrease of the particle size of the copper-coated graphite powder, and the wear rate of the composites increased significantly with the decrease of the particle size of the copper-coated graphite powder. The current carrying properties of composites with different particle size ratios and QCr0.5 pairs are good and fluctuate little. The current-carrying friction properties of 150 μm copper powder and 75 μm copper-coated graphite powder were found to be the best. The wear surface could be divided into mechanical wear area and arc erosion area. The main area of arc erosion was less than 15% of the total area, and it was mainly distributed in the friction outlet area. The main forms of mechanical wear included furrow, rolling deformation, cold welding, and tearing, among other forms. Graphite film was formed on the surface. The surface quality of the composite prepared by 150 μm copper powder and 75 μm copper-coated graphite powder was the best, the Sa was 3.22 μm, rolling deformation was the most adequate, no large tear pit and furrow appeared, and the carbon content on the worn surface was much higher than that in the composite. The behavior of arc erosion was mainly melting and splashing, and the particle size of the original powder had little effect on it. Full article
Show Figures

Figure 1

33 pages, 9024 KiB  
Article
Performance of PATC-PDMDAAC Composite Coagulants in Low-Temperature and Low-Turbidity Water Treatment
by Peng Zhang, Lina Liao and Guocheng Zhu
Materials 2019, 12(17), 2824; https://doi.org/10.3390/ma12172824 - 2 Sep 2019
Cited by 27 | Viewed by 4323
Abstract
A novel composite was synthesized by using flocculant polyaluminum titanium silicate chloride (PATC) and poly(diallyldimethylammonium chloride) (PDMDAAC) monomers to treat low-temperature and low-turbidity water. The structure and physicochemical properties of PATC-PDMDAAC were analyzed by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis/differential scanning calorimetry [...] Read more.
A novel composite was synthesized by using flocculant polyaluminum titanium silicate chloride (PATC) and poly(diallyldimethylammonium chloride) (PDMDAAC) monomers to treat low-temperature and low-turbidity water. The structure and physicochemical properties of PATC-PDMDAAC were analyzed by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis/differential scanning calorimetry (TG/DSC), X-ray diffraction spectroscopy (XRD), and scanning electron microscopy–energy dispersion spectrum (SEM-EDS). The compound flocculant produced new functional groups exhibiting great thermal stability, and the complex chemical reaction between the two monomers generated new substances with reticular structures. Coagulation performance results showed that the PATC-PDMDAAC had an organic and inorganic ratio of 0.15 and exhibited excellent removal efficiency at pH 9.0, dosage of 1.80 mg/L, sedimentation time of 40 min, and a stirring speed of 110 r/min. The optimal treatment efficiency reduced the turbidity to 0.56 NTU (Nephelometric Turbidity Unit). The removal rates of TOC (Total Organic Carbon) and UV254 (Ultraviolet 254) were 62.18% (from 7.23 mg/L to 2.734 mg/L) and 99.99% (from 10 mg/L to 0.001 mg/L). The 3D fluorescence, zeta potential and kinetic analysis in the flocculation process indicated that coagulant electroneutralization and adsorption bridge in a slightly alkaline environment played a dominant role, and a sufficient and effective collision occurred between the coagulant and particulate matter under the optimal dosage. Lastly, PATC-PDMDAAC has more advantage than conventional flocculants in the treatment of low-temperature and low-turbidity water in the Xiangjiang River. Full article
Show Figures

Graphical abstract

38 pages, 8252 KiB  
Review
An Overview of the Recent Developments in Metal Matrix Nanocomposites Reinforced by Graphene
by Mehran Dadkhah, Abdollah Saboori and Paolo Fino
Materials 2019, 12(17), 2823; https://doi.org/10.3390/ma12172823 - 2 Sep 2019
Cited by 74 | Viewed by 6275
Abstract
Two-dimensional graphene plateletes with unique mechanical, electrical and thermo-physical properties could attract more attention for their employed as reinforcements in the production of new metal matrix nanocomposites (MMNCs), due to superior characteristics, such as being lightweight, high strength and high performance. Over the [...] Read more.
Two-dimensional graphene plateletes with unique mechanical, electrical and thermo-physical properties could attract more attention for their employed as reinforcements in the production of new metal matrix nanocomposites (MMNCs), due to superior characteristics, such as being lightweight, high strength and high performance. Over the last years, due to the rapid advances of nanotechnology, increasing demand for the development of advanced MMNCs for various applications, such as structural engineering and functional device applications, has been generated. The purpose of this work is to review recent research into the development in the powder-based production, property characterization and application of magnesium, aluminum, copper, nickel, titanium and iron matrix nanocomposites reinforced with graphene. These include a comparison between the properties of graphene and another well-known carbonaceous reinforcement (carbon nanotube), following by powder-based processing strategies of MMNCs above, their mechanical and tribological properties and their electrical and thermal conductivities. The effects of graphene distribution in the metal matrices and the types of interfacial bonding are also discussed. Fundamentals and the structure–property relationship of such novel nanocomposites have also been discussed and reported. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

21 pages, 21916 KiB  
Article
Experimental Study of Wear Mechanisms of Cemented Carbide in the Turning of Ti6Al4V
by Sara Saketi, Stina Odelros, Jonas Östby and Mikael Olsson
Materials 2019, 12(17), 2822; https://doi.org/10.3390/ma12172822 - 2 Sep 2019
Cited by 23 | Viewed by 3838
Abstract
Titanium and titanium alloys such as Ti-6Al-4V are generally considered as difficult-to-machine materials. This is mainly due to their high chemical reactivity, poor thermal conductivity, and high strength, which is maintained at elevated temperatures. As a result, the cutting tool is exposed to [...] Read more.
Titanium and titanium alloys such as Ti-6Al-4V are generally considered as difficult-to-machine materials. This is mainly due to their high chemical reactivity, poor thermal conductivity, and high strength, which is maintained at elevated temperatures. As a result, the cutting tool is exposed to rather extreme contact conditions resulting in plastic deformation and wear. In the present work, the mechanisms behind the crater and flank wear of uncoated cemented carbide inserts in the turning of Ti6Al4V are characterized using high-resolution scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and high-resolution Auger electron spectroscopy (AES).The results show that, for combinations of low cutting speeds and feeds, crater and flank wear were found to be controlled by an attrition wear mechanism, while for combinations of medium to high cutting speeds and feeds, a diffusion wear mechanism was found to control the wear. For the latter combinations, high-resolution SEM and AES analysis reveal the formation of an approximately 100 nm thick carbon-depleted tungsten carbide (WC)-layer at the cemented carbide/Ti6Al4V interface due to the diffusion of carbon into the adhered build-up layers of work material on the rake and flank surfaces. Full article
Show Figures

Figure 1

16 pages, 4835 KiB  
Article
Swelling and Helium Bubble Morphology in a Cryogenically Treated FeCrNi Alloy with Martensitic Transformation and Reversion after Helium Implantation
by Feifei Zhang, Lynn Boatner, Yanwen Zhang, Di Chen, Yongqiang Wang and Lumin Wang
Materials 2019, 12(17), 2821; https://doi.org/10.3390/ma12172821 - 2 Sep 2019
Cited by 9 | Viewed by 3913
Abstract
A cryo-quenched 70 wt % Fe-15 wt% Cr-15 wt% Ni single-crystal alloy with fcc (face centered cubic), bcc (body centered cubic), and hcp (hexagonal close packed) phases was implanted with 200 keV He+ ions up to 2 × 1017 ions·cm−2 [...] Read more.
A cryo-quenched 70 wt % Fe-15 wt% Cr-15 wt% Ni single-crystal alloy with fcc (face centered cubic), bcc (body centered cubic), and hcp (hexagonal close packed) phases was implanted with 200 keV He+ ions up to 2 × 1017 ions·cm−2 at 773 K. Surface-relief features were observed subsequent to the He+ ion implantation, and transmission electron microscopy was used to characterize both the surface relief properties and the details of associated “swelling effects” arising cumulatively from the austenitic-to-martensitic phase transformation and helium ion-induced bubble evolution in the single-crystal ternary alloy. The bubble size in the bcc phase was found to be larger than that in the fcc phase, while the bubble density in the bcc phase was correspondingly lower. The phase boundaries with misfit dislocations formed during the martensitic transformation and reversion processes served as helium traps that dispersed the helium bubble distribution. Swelling caused by the phase transformation in the alloy was dominant compared to that caused by helium bubble formation due to the limited depth of the helium ion implantation. The detailed morphology of helium bubbles formed in the bcc, hcp, and fcc phases were compared and correlated with the characters of each phase. The helium diffusion coefficient under irradiation at 773 K in the bcc phase was much higher (i.e., by several orders of magnitude) than that in the fcc phase and led to faster bubble growth. Moreover, the misfit phase boundaries were shown to be effective sites for the diffusion of helium atoms. This feature may be considered to be a desirable property for improving the radiation tolerance of the subject, ternary alloy. Full article
(This article belongs to the Special Issue Radiation Damage in Materials: Helium Effects)
Show Figures

Graphical abstract

14 pages, 5688 KiB  
Article
Construction of Complex Structures Containing Micro-Pits and Nano-Pits on the Surface of Titanium for Cytocompatibility Improvement
by Guisen Wang, Yi Wan and Zhanqiang Liu
Materials 2019, 12(17), 2820; https://doi.org/10.3390/ma12172820 - 2 Sep 2019
Cited by 12 | Viewed by 3016
Abstract
The surface topography of medical implants plays an important role in the regulation of cellular responses. Microstructure and nanostructure surfaces have been proved to enhance cell spreading and proliferation with respect to smooth surfaces. In this study, we fabricated a new structure including [...] Read more.
The surface topography of medical implants plays an important role in the regulation of cellular responses. Microstructure and nanostructure surfaces have been proved to enhance cell spreading and proliferation with respect to smooth surfaces. In this study, we fabricated a new structure including micro-pits and nano-pits on the surface of titanium via sandblasting, acid etching and chemical oxidation to investigate the influence of composite structures on cell behavior. Meanwhile, the surface properties and corrosion resistance of treated samples were also tested. The micro/nanostructured titanium surface comprising of micro-pits and nano-pits presented enhanced roughness and hydrophilicity. In addition, the corrosion resistance of the titanium substrate with micro-pits and nano-pits was significantly improved compared to that of polished titanium. More importantly, the micro/nanostructured titanium surface proved a good interfacial environment to promote osteoblast functions such as cell adhesion and spreading. Taken together, these results showed that the construction of micro/nanostructure on the titanium surface is an effective modification strategy to improve osteoblast cell responses. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Graphical abstract

23 pages, 3124 KiB  
Article
A Hybrid Modeling of the Physics-Driven Evolution of Material Addition and Track Generation in Laser Powder Directed Energy Deposition
by Gabriele Piscopo, Eleonora Atzeni and Alessandro Salmi
Materials 2019, 12(17), 2819; https://doi.org/10.3390/ma12172819 - 2 Sep 2019
Cited by 27 | Viewed by 5410
Abstract
Directed Energy Deposition (DED) is one of the most promising additive manufacturing technologies for the production of large metal components and because of the possibility it offers of adding material to an existing part. Nevertheless, DED is considered premature for industrial production, because [...] Read more.
Directed Energy Deposition (DED) is one of the most promising additive manufacturing technologies for the production of large metal components and because of the possibility it offers of adding material to an existing part. Nevertheless, DED is considered premature for industrial production, because the identification of the process parameters may be a very complex task. An original hybrid analytic-numerical model, related to the physics of laser powder DED, is presented in this work in order to evaluate easily and quickly the effects of different sets of process parameters on track deposition outcomes. In the proposed model, the volume of the deposited material is modeled as a function of process parameters using a synergistic interaction between regression-based analytic models and a novel element activation strategy. The model is implemented in a Finite Element (FE) software, and the forecasting capability is assessed by comparing the numerical results with experimental data from the literature. The predicted results show a reasonable correlation with the experimental dimensions of the melt pool and demonstrate that the proposed model may be used for prediction purposes, if a specific set of process parameters that guarantees adequate adhesion of the deposited track to the substrate is introduced. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

20 pages, 10774 KiB  
Article
Research on the Improvement of Concrete Autogenous Self-healing Based on the Regulation of Cement Particle Size Distribution (PSD)
by Lianwang Yuan, Shuaishuai Chen, Shoude Wang, Yongbo Huang, Qingkuan Yang, Shuai Liu, Jinbang Wang, Peng Du, Xin Cheng and Zonghui Zhou
Materials 2019, 12(17), 2818; https://doi.org/10.3390/ma12172818 - 2 Sep 2019
Cited by 36 | Viewed by 4213
Abstract
Overgrinding of Portland cement brings excessive shrinkage and poor self-healing ability to concrete. In this paper, through the ultrasonic test and optical micrograph observation, the self-healing properties of concrete prepared by cement with different particle size distributions were studied. Besides, the effect of [...] Read more.
Overgrinding of Portland cement brings excessive shrinkage and poor self-healing ability to concrete. In this paper, through the ultrasonic test and optical micrograph observation, the self-healing properties of concrete prepared by cement with different particle size distributions were studied. Besides, the effect of carbonation and continued hydration on self-healing of concrete was analyzed. Results show that, for the Portland cement containing more particles with the size 30~60 μm, the concrete could achieve a better self-healing ability of concrete at 28 days. For the two methods to characterize the self-healing properties of concrete, the ultrasonic test is more accurate in characterizing the self-healing of internal crack than optical micrograph observation. The autogenous self-healing of concrete is jointly affected by the continued hydration and carbonation. At 7 days and 30 days, the autogenous self-healing of concrete is mainly controlled by the continued hydration and carbonation, respectively. The cement particle size could affect the continued hydration by affecting un-hydrated cement content and the carbonation by affecting the Ca(OH)2 content. Therefore, a proper distribution of cement particle size, which brings a suitable amount of Ca(OH)2 and un-hydrated cement, could improve the self-healing ability of concrete. Full article
(This article belongs to the Special Issue Concrete and Construction Materials)
Show Figures

Figure 1

13 pages, 10867 KiB  
Article
Grafting Hyperbranched Polymers onto TiO2 Nanoparticles via Thiol-yne Click Chemistry and Its Effect on the Mechanical, Thermal and Surface Properties of Polyurethane Coating
by Feng Zhan, Lei Xiong, Fang Liu and Chenying Li
Materials 2019, 12(17), 2817; https://doi.org/10.3390/ma12172817 - 2 Sep 2019
Cited by 10 | Viewed by 3556
Abstract
In this study, we proposed a novel and facile method to modify the surface of TiO2 nanoparticles and investigated the influence of the surface-modified TiO2 nanoparticles as an additive in a polyurethane (PU) coating. The hyperbranched polymers (HBP) were grafted on [...] Read more.
In this study, we proposed a novel and facile method to modify the surface of TiO2 nanoparticles and investigated the influence of the surface-modified TiO2 nanoparticles as an additive in a polyurethane (PU) coating. The hyperbranched polymers (HBP) were grafted on the surface of TiO2 nanoparticles via the thiol-yne click chemistry to reduce the aggregation of nanoparticles and increase the interaction between TiO2 and polymer matrices. The grafting of HBP on the TiO2 nanoparticles surface was investigated by means of X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Fourier transform infrared (FT-IR), nuclear magnetic resonance (NMR) and thermogravimetry analysis (TGA). The thermal and mechanical properties of nanocomposite coatings containing various amounts of TiO2 nanoparticles were measured by dynamic mechanical thermal (DMTA) and tensile strength measurement. Moreover, the surface structure and properties of the newly prepared nanocomposite coatings were examined. The experimental results demonstrate that the incorporation of the surface-modified TiO2 nanoparticles can improve the mechanical and thermal properties of nanocomposite coatings. The results also reveal that the surface modification of TiO2 with the HBP chains improves the nanoparticle dispersion, and the coating surface shows a lotus leaf-like microstructure. Thus, the functional nanocomposite coatings exhibit superhydrophobic properties, good photocatalytic depollution performance, and high stripping resistance. Full article
Show Figures

Figure 1

15 pages, 6418 KiB  
Article
Antimicrobial Activity of Protamine-Loaded Calcium Phosphates against Oral Bacteria
by Masashi Fujiki, Kodai Abe, Tohru Hayakawa, Takatsugu Yamamoto, Mana Torii, Keishi Iohara, Daisuke Koizumi, Rie Togawa, Mamoru Aizawa and Michiyo Honda
Materials 2019, 12(17), 2816; https://doi.org/10.3390/ma12172816 - 2 Sep 2019
Cited by 7 | Viewed by 3036
Abstract
Protamine is an antimicrobial peptide extracted from fish. In this study, we loaded protamine onto dicalcium phosphate anhydride (DCPA), a dental material. Protamine was loaded by stirring DCPA into a protamine solution. To explore the antimicrobial activity of the materials, we cultivated Streptococcus [...] Read more.
Protamine is an antimicrobial peptide extracted from fish. In this study, we loaded protamine onto dicalcium phosphate anhydride (DCPA), a dental material. Protamine was loaded by stirring DCPA into a protamine solution. To explore the antimicrobial activity of the materials, we cultivated Streptococcus mutans on fabricated discs for 24 h. When S. mutans was cultivated on the discs under no sucrose conditions, the loaded protamine was not released, and the ratio of dead bacteria increased on the surface of P (125) DCPA (half of the saturated level of protamine (125 ppm protamine) was loaded). Aside from P (500) DCPA (saturated level of protamine was loaded), some protamine was released, and the number of planktonic bacteria in the supernatant decreased. Using medium containing 1% sucrose, the release of protamine was promoted from P (125) DCPA due to lowered pH. However, lowering of the pH decreased the antimicrobial activity of protamine. On the other hand, P (500) DCPA released protamine before the pH was lowered, and biofilm formation was inhibited. The loaded protamine expressed antimicrobial activity, both on the surface of the materials and in the surrounding environment. The interaction of loaded protamine with calcium phosphates could promote the application of protamine in the dental field. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

14 pages, 4612 KiB  
Article
The Application of Electrical Parameters to Reflect the Hydration Process of Cement Paste with Rice Husk Ash
by Hui Wang, Lingxuan Hu, Peng Cao, Baoxin Luo, Jing Tang, Feiting Shi, Jinyan Yu, Hongjie Li and Kaikai Jin
Materials 2019, 12(17), 2815; https://doi.org/10.3390/ma12172815 - 2 Sep 2019
Cited by 26 | Viewed by 2767
Abstract
This paper aims to study the electrical parameters (electrical resistivity and alternating current (AC) impedance spectroscopy) of cement paste with rice husk ash (RHA). The water to cement (Mass ratio of water to cement (w/c)) ratios of the paste in this study varied [...] Read more.
This paper aims to study the electrical parameters (electrical resistivity and alternating current (AC) impedance spectroscopy) of cement paste with rice husk ash (RHA). The water to cement (Mass ratio of water to cement (w/c)) ratios of the paste in this study varied from 0.4 to 0.5. The mass ratio of rice husk ash in each w/c ratio of specimens ranged from 0% to 15% by t mass of cement. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used to determine the microstructures of specimens. Moreover, the slump flow and plastic viscosity of fresh paste were determined. The results indicated that with the increasing dosage of RHA, the fluidity decreased, while the plastic viscosity increased. Meanwhile, a high w/c ratio led to a low plastic viscosity and high slump flow. The electrical resistivity of RHA cement paste gradually ascended with the increasing curing period. The conduction of specimens intricately changed by mixing RHA, a reasonable equivalent circuit was selected to describe the conduction mechanism by AC impedance spectroscopy. Additionally, the results of XRD and SEM showed that RHA could effectively promote the hydration process as well as decrease the size and number of cracks in hardened cement paste. Full article
Show Figures

Figure 1

6 pages, 831 KiB  
Article
Stress Dependence of Seebeck Coefficient in Iron-Based Amorphous Ribbons
by Michał Nowicki
Materials 2019, 12(17), 2814; https://doi.org/10.3390/ma12172814 - 2 Sep 2019
Cited by 2 | Viewed by 2869
Abstract
The results of an investigation on tensile stress dependence of mean Seebeck coefficient in Fe-based amorphous ribbons are presented, constituting a new Seebeck-sigma effect. A measurement test stand, capable of the determination of small variations in thermopower in such materials under stress is [...] Read more.
The results of an investigation on tensile stress dependence of mean Seebeck coefficient in Fe-based amorphous ribbons are presented, constituting a new Seebeck-sigma effect. A measurement test stand, capable of the determination of small variations in thermopower in such materials under stress is described. Exemplary results for commercially available, positively magnetostrictive SA1 and 2605CO amorphous ribbons show significant stress dependence with more than 1% of relative change, in contrast to negatively magnetostrictive 6030D alloys with 0.1% change. Non-ferromagnetic alloys are tested for comparison purposes, giving negligible results. Thus, the possibility of a magnetomechanical mechanism of the stress influence is proposed. Full article
(This article belongs to the Special Issue Advances in Magnetic Measurements)
Show Figures

Graphical abstract

11 pages, 1727 KiB  
Article
High Temperature Resistant Separator of PVDF-HFP/DBP/C-TiO2 for Lithium-Ion Batteries
by Haijuan Li, Ling Li, Shuaizhi Zheng, Xinming Wang and Zengsheng Ma
Materials 2019, 12(17), 2813; https://doi.org/10.3390/ma12172813 - 2 Sep 2019
Cited by 21 | Viewed by 4551
Abstract
To improve the thermal shrinkage and ionic conductivity of the separator for lithium-ion batteries, adding carboxylic titanium dioxide nanofiber materials into the matrix is proposed as an effective strategy. In this regard, a poly(vinylidene fluoride-hexafluoro propylene)/dibutyl phthalate/carboxylic titanium dioxide (PVDF-HFP/DBP/C-TiO2) composite [...] Read more.
To improve the thermal shrinkage and ionic conductivity of the separator for lithium-ion batteries, adding carboxylic titanium dioxide nanofiber materials into the matrix is proposed as an effective strategy. In this regard, a poly(vinylidene fluoride-hexafluoro propylene)/dibutyl phthalate/carboxylic titanium dioxide (PVDF-HFP/DBP/C-TiO2) composite separator is prepared with the phase inversion method. When the content of TiO2 nanofibers reaches 5%, the electrochemical performance of the battery and ion conductivity of the separator are optimal. The PVDF-HFP/DBP/C-TiO2 (5%) composite separator shows about 55.5% of porosity and 277.9% of electrolyte uptake. The PVDF-HFP/DBP/C-TiO2 (5%) composite separator has a superior ionic conductivity of 1.26 × 10 −3 S cm−1 and lower interface impedance at room temperature, which brings about better cycle and rate performance. In addition, the cell assembled with a PVDF-HFP/DBP/C-TiO2 separator can be charged or discharged normally and has an outstanding discharge capacity of about 150 mAh g−1 at 110 °C. The battery assembled with the PVDF-HFP/DBP/C-TiO2 composite separator exhibits excellent electrochemical performance under high and room temperature environments. Full article
Show Figures

Figure 1

10 pages, 2346 KiB  
Article
Effect of Carbonation on Abrasion Resistance of Alkali-Activated Slag with Various Activators
by Hyeong-Ki Kim, Keum-Il Song, Jin-Kyu Song and Jeong Gook Jang
Materials 2019, 12(17), 2812; https://doi.org/10.3390/ma12172812 - 2 Sep 2019
Cited by 5 | Viewed by 2850
Abstract
The effect of carbonation on the abrasion resistance of alkali-activated slag (AAS) was investigated. Various activator sets were selected for synthesizing AAS specimens, and the compressive strength was measured before and after carbonation. The abrasion resistance of the specimens was measured in accordance [...] Read more.
The effect of carbonation on the abrasion resistance of alkali-activated slag (AAS) was investigated. Various activator sets were selected for synthesizing AAS specimens, and the compressive strength was measured before and after carbonation. The abrasion resistance of the specimens was measured in accordance with the ASTM C944 test method. The relationship between the mass loss caused by abrasion and compressive strength was analyzed to understand the effect of matrix strength on abrasion resistance. Test results showed that the decrease in compressive strength of AAS specimens by carbonation reduced their abrasion resistance. In addition, the abrasion resistance of AAS before and after carbonation was sensitively influenced by activator type. It can be concluded that additional caution is required when using AAS where abrasion may have occurred. Full article
(This article belongs to the Special Issue Microstructures and Durability of Cement-Based Materials)
Show Figures

Figure 1

Previous Issue
Back to TopTop