Simultaneous Adsorption of Cationic Dyes from Binary Solutions by Thiourea-Modified Poly(acrylonitrile-co-acrylic acid): Detailed Isotherm and Kinetic Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Preparation of Thiourea-Modified Poly(acrylonitrile-co-acrylic acid)(TMPAA)
2.3. Binary Adsorption Studies
2.4. Calculation of Adsorption Isotherms
2.5. Competition and Interaction Mechanism
- (a)
- Antagonistic interaction: This occurred when the adsorption capacity of an adsorbent reduces in a solution containing other components ( < 1).
- (b)
- Synergistic interaction: The adsorption capacity of an adsorbent increases when it is in association with other components ( > 1).
- (c)
2.6. Calculation of Adsorption Kinetics
3. Results and Discussions
3.1. Characterization of TMPAA
3.2. Effect of Initial Dye Concentration and pH
3.3. Effect of TMPAA Dose
3.4. Effect of Contact Time
3.5. Adsorption Isotherms for Single and Binary Systems
3.5.1. Extended Freundlich Equation (EFE) for Binary Cationic Dye System
3.5.2. Extended Freundlich Equation (EFE) for Binary Cationic Dye System
3.6. Adsorption Kinetics
3.7. FTIR and SEM Analyses
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chaúque, E.F.C.; Dlamini, L.N.; Adelodun, A.A.; Greyling, C.J.; Ngila, J.C. Electrospun polyacrylonitrile nanofibers functionalized with EDTA for adsorption of ionic dyes. Phys. Chem. Earth 2017, 100, 201–211. [Google Scholar] [CrossRef]
- Hokkanen, S.; Bhatnagar, A.; Sillanpää, M. A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Res. 2016, 91, 156–173. [Google Scholar] [CrossRef] [PubMed]
- Abhishek, L.; Abishek, R.; Deepak, K.K.; Sivakumar, G. Advanced Water Treatment Using Nano- Materials. Int. J. Innov. Res. Sci. Eng. Technol. 2014, 3, 17130–17138. [Google Scholar]
- Hai, F.I.; Yamamoto, K.; Nakajima, F.; Fukushi, K. Bioaugmented membrane bioreactor (MBR) with GAC-packed zone for high rate textile wastewater treatment. Water Res. 2011, 45, 2199–2206. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Wang, L.; Ma, Y.; Yang, W. Super-adsorbent material based on functional polymer particles with a multilevel porous structure. NPG Asia Mater. 2016, 1–9. [Google Scholar] [CrossRef]
- Tan, K.B.; Vakili, M.; Horri, B.A.; Poh, P.E.; Abdullah, A.Z.; Salamatinia, B. Adsorption of dyes by nanomaterials: Recent developments and adsorption mechanisms. Sep. Purif. Technol. 2015, 150, 229–242. [Google Scholar] [CrossRef]
- Zhang, G.; Yi, L.; Deng, H.; Sun, P. Dyes adsorption using a synthetic carboxymethyl cellulose-acrylic acid adsorbent. J. Environ. Sci. 2014, 26, 1203–1211. [Google Scholar] [CrossRef]
- Zhang, Y.Z.; Li, J.; Zhao, J.; Bian, W.; Li, Y.; Wang, X.J. Adsorption behavior of modified Iron stick yam skin with Polyethyleneimine as a potential biosorbent for the removal of anionic dyes in single and ternary systems at low temperature. Bioresour. Technol. 2016, 222, 285–293. [Google Scholar] [CrossRef]
- Yemendzhiev, H.; Alexieva, Z.; Krastanov, A. Decolorization of synthetic dye reactive blue 4 by mycelial culture of white-rot fungi trametes versicolor 1. Biotechnol. Biotechnol. Equip. 2009, 23, 230–232. [Google Scholar] [CrossRef]
- Sengupta, R.; Chakraborty, S.; Bandyopadhyay, S.; Dasgupta, S.; Mukhopadhyay, R.; Auddy, K.; Deuri, A.S. A Short Review on Rubber/Clay Nanocomposites With Emphasis on Mechanical Properties. Engineering 2007, 47, 21–25. [Google Scholar] [CrossRef]
- García-Mateos, F.J.; Ruiz-Rosas, R.; Marqués, M.D.; Cotoruelo, L.M.; Rodríguez-Mirasol, J.; Cordero, T. Removal of paracetamol on biomass-derived activated carbon: Modeling the fixed bed breakthrough curves using batch adsorption experiments. Chem. Eng. J. 2015, 279, 18–30. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Xing, R.; Liu, S.; Yu, H.; Qin, Y.; Li, K.; Feng, J.; Li, R.; Li, P. Recovery of silver (I) using a thiourea-modified chitosan resin. J. Hazard. Mater. 2010, 180, 577–582. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Bai, Z.S.; Wang, H.L. Microfluidic synthesis of thiourea modified chitosan microsphere of high specific surface area for heavy metal wastewater treatment. Chin. Chem. Lett. 2017, 28, 633–641. [Google Scholar] [CrossRef]
- Varaprasad, K.; Jayaramudu, T.; Sadiku, E.R. Removal of dye by carboxymethyl cellulose, acrylamide and graphene oxide via a free radical polymerization process. Carbohydr. Polym. 2017, 164, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Maleki, A.; Hamesadeghi, U.; Daraei, H.; Hayati, B.; Najafi, F.; McKay, G.; Rezaee, R. Amine functionalized multi-walled carbon nanotubes: Single and binary systems for high capacity dye removal. Chem. Eng. J. 2017, 313, 826–835. [Google Scholar] [CrossRef]
- Wang, L.; Xing, R.; Liu, S.; Qin, Y.; Li, K.; Yu, H.; Li, R.; Li, P. Studies on adsorption behavior of Pb(II) onto a thiourea-modified chitosan resin with Pb(II) as template. Carbohydr. Polym. 2010, 81, 305–310. [Google Scholar] [CrossRef]
- Qin, Y.; Wang, L.; Zhao, C.; Chen, D.; Ma, Y.; Yang, W. Ammonium-Functionalized Hollow Polymer Particles As a pH-Responsive Adsorbent for Selective Removal of Acid Dye. ACS Appl. Mater. Interfaces 2016, 8, 16690–16698. [Google Scholar] [CrossRef] [PubMed]
- Zahri, N.A.M.; Jamil, S.N.A.M.; Abdullah, L.C.; Yaw, T.C.S.; Mobarekeh, M.N.; Huey, S.J.; Rapeia, N.S.M. Improved method for preparation of amidoxime modified poly(acrylonitrile-co-acrylic acid): Characterizations and adsorption case study. Polymers (Basel) 2015, 7, 1205–1220. [Google Scholar] [CrossRef]
- El-korashy, S.A.; Elwakeel, K.Z.; El-hafeiz, A.A. Fabrication of bentonite/thiourea-formaldehyde composite material for Pb (II), Mn (VII) and Cr (VI) sorption: A combined basic study and industrial application. J. Clean. Prod. 2016, 137, 40–50. [Google Scholar] [CrossRef]
- Adeyi, A.A.; Jamil, S.N.A.M.; Abdullah, L.C.; Choong, T.S.Y. Adsorption of Malachite Green Dye from Liquid Phase Using Hydrophilic Thiourea-Modified Poly (acrylonitrile-co-acrylic acid): Kinetic and Isotherm Studies. J. Chem. 2019, 2019, 1–14. [Google Scholar] [CrossRef]
- Adeyi, A.A.; Jamil, S.N.A.M.; Abdullah, L.C.; Choong, T.S.Y. Hydrophilic thiourea-modified poly(acrylonitrile-co-acrylic acid) adsorbent: Preparation, characterization, and dye removal performance. Iran. Polym. J. 2019, 28, 483–491. [Google Scholar] [CrossRef]
- Adeyi, A.A.; Jamil, S.N.A.M.; Abdullal, L.C.; Choong, T.S.Y.; Lau, K.L.; Abdullah, M. Adsorptive Removal of Methylene Blue from Aquatic environment using thiourea modified poly(acrylonitrile-co-acrylic acid). Materials 2019, 12, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Meevasana, K.; Pavasant, P. Quantitative measurement techniques for binary dye mixtures: A case study in an adsorption system. Sci. Asia 2008, 34, 390–394. [Google Scholar] [CrossRef]
- Zou, W.; Liu, L.; Li, H.; Han, X. Investigation of synergistic adsorption between methyl orange and Cd(II) from binary mixtures on magnesium hydroxide modified clinoptilolite. Korean J. Chem. Eng. 2016, 33, 2073–2083. [Google Scholar] [CrossRef]
- Atar, N.; Olgun, A.; Wang, S.; Liu, S. Adsorption of Anionic Dyes on Boron Industry Waste in Single and Binary Solutions Using Batch and Fixed-Bed Systems. J. Chem. Eng. Data 2011, 56, 508–516. [Google Scholar] [CrossRef]
- Janaki, V.; Vijayaraghavan, K.; Ramasamy, A.K.; Lee, K.; Oh, B.; Kamala-kannan, S. Competitive adsorption of Reactive Orange 16 and Reactive Brilliant Blue R on polyaniline/bacterial extracellular polysaccharides composite—A novel eco-friendly polymer. J. Hazard. Mater. 2012, 242, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Ayawei, N.; Ebelegi, A.N.; Wankasi, D. Modelling and Interpretation of Adsorption Isotherms. J. Chem. 2017, 2017, 1–11. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, B.H. Preparation, characterization and evaluation of adsorptive properties of orange peel based activated carbon via microwave induced K2CO3activation. Bioresour. Technol. 2012, 104, 679–686. [Google Scholar] [CrossRef]
- Shahbeig, H.; Bagheri, N.; Ghorbanian, S.A.; Ahmad, H.; Poorkarimi, S. A new adsortption isotherm model of aqueous solutions on granular activited carbon.pdf. World J. Model. Simul. 2013, 9, 243–254. [Google Scholar]
- Girish, C.R. Various Isotherm Models for Multicomponent Adsorption: A Review. Int. J. Civ. Eng. Technol. 2017, 8, 80–86. [Google Scholar]
- Sharma, K.; Vyas, R.K.; Singh, K.; Dalai, A.K. Degradation of a synthetic binary dye mixture using reactive adsorption: Experimental and modeling studies. J. Environ. Chem. Eng. 2018, 6, 5732–5743. [Google Scholar] [CrossRef]
- Ma, G.; Liu, Y.; Lei, Z.; Zhou, P.; Luo, X.; Zhang, Z. Synergic adsorption of acid blue 80 and heavy metal ions (Cu2+/Ni2+) onto activated carbon and its mechanisms. J. Ind. Eng. Chem. 2015, 27, 164–174. [Google Scholar]
- Leodopoulos, C.; Doulia, D.; Gimouhopoulos, K.; Triantis, T.M. Single and simultaneous adsorption of methyl orange and humic acid onto bentonite. Appl. Clay Sci. 2012, 70, 84–90. [Google Scholar] [CrossRef]
- Laabd, M.; Chafai, H.; Essekri, A.; Elamine, M.; Al-muhtaseb, S.A.; Lakhmiri, R.; Albourine, A. Single and multi-component adsorption of aromatic acids using an eco- friendly polyaniline-based biocomposite. Sustain. Mater. Technol. 2017, 12, 35–43. [Google Scholar] [CrossRef]
- Wang, F.; Pan, Y.; Cai, P.; Guo, T.; Xiao, H. Single and binary adsorption of heavy metal ions from aqueous solutions using sugarcane cellulose-based adsorbent. Bioresour. Technol. 2017, 241, 482–490. [Google Scholar] [CrossRef] [PubMed]
- Choy, K.K.H.; Porter, J.F.; Mckay, G. Langmuir Isotherm Models Applied to the Multicomponent Sorption of Acid Dyes from Effluent onto Activated Carbon. J. Chem. Eng. Data 2000, 45, 575–584. [Google Scholar] [CrossRef]
- Girish, C.R. Simultaneous adsorption of pollutants onto the adsorbent review of interaction mechanism between the pollutants and the adsorbent. Int. J. Eng. Technol. 2018, 7, 3613–3622. [Google Scholar]
- Wu, Y.; Jiang, L.; Wen, Y.; Zhou, J. Biosorption of Basic Violet 5BN and Basic Green by waste brewery ’ s yeast from single and multicomponent systems. Environ. Sci. Pollut. Res. 2012, 19, 510–521. [Google Scholar] [CrossRef]
- Anna, B.; Kleopas, M. Adsorption of Cd (II), Cu (II), Ni (II) and Pb (II) onto natural bentonite: Study in mono- and multi-metal systems. Environ. Earth Sci. 2015, 73, 5435–5444. [Google Scholar] [CrossRef]
- Sdiri, A.T.; Higashi, T.; Jamoussi, F. Adsorption of copper and zinc onto natural clay in single and binary systems. Int. J. Environ. Sci. Technol. 2014, 11, 1081–1092. [Google Scholar] [CrossRef]
- Istratie, R.; Stoia, M.; Pa, C. Single and simultaneous adsorption of methyl orange and phenol onto magnetic iron oxide/carbon nanocomposites. Arab. J. Chem. 2016. [Google Scholar] [CrossRef]
- Zhang, L.; Wei, J.; Zhao, X.; Li, F.; Jiang, F.; Zhang, M.; Cheng, X. Competitive adsorption of strontium and cobalt onto tin antimonate. Chem. Eng. J. 2016, 285, 679–689. [Google Scholar] [CrossRef]
- Ayawei, N.; Ekubo, A.T.; Wankasi, D.; Dikio, E.D. Adsorption of congo red by Ni/Al-CO3: Equilibrium, thermodynamic and kinetic studies. Orient. J. Chem. 2015, 31, 1307–1318. [Google Scholar] [CrossRef]
- Ho, Y.S. Second-order kinetic model for the sorption of cadmium onto tree fern: A comparison of linear and non-linear methods. Water Res. 2006, 40, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zheng, P.; Wang, L.; Liu, X. Preparation of Sulfonated Poly (arylene ether nitrile) -Based Adsorbent as a Highly Selective and efficient adsorbent for cationic dyes. Polymers 2019, 11, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Charumathi, D.; Das, N. Packed bed column studies for the removal of synthetic dyes from textile wastewater using immobilised dead C. tropicalis. Desal. 2012, 285, 22–30. [Google Scholar] [CrossRef]
- Naseem, K.; Farooqi, Z.H.; Begum, R.; Ghufran, M.; Zia, M.; Rehman, U.; Najeeb, J.; Irfan, A.; Al-sehemi, A.G. Poly (N -isopropylmethacrylamide-acrylic acid) microgels as adsorbent for removal of toxic dyes from aqueous medium. J. Mol. Liquid. 2018, 268, 229–238. [Google Scholar] [CrossRef]
- Mishra, A.K.; Agrawal, N.R.; Das, I. Synthesis of water dispersible dendritic amino acid modified polythiophenes as highly effective adsorbent for removal of methylene blue. J. Environ. Chem. Eng. 2017, 5, 4923–4936. [Google Scholar] [CrossRef]
- Alqadami, A.A.; Naushad, M.; Alothman, Z.A.; Ahamad, T. Adsorptive performance of MOF nanocomposite for methylene blue and malachite green dyes: Kinetics, isotherm and mechanism. J. Environ. Manag. 2018, 223, 29–36. [Google Scholar] [CrossRef]
- Asfaram, A.; Ghaedi, M.; Hossein, M.; Azqhandi, A.; Goudarzi, A.; Hajati, S. Ultrasound-assisted binary adsorption of dyes onto Mn @ CuS/ZnS-NC-AC as a novel adsorbent: Application of chemometrics for optimization and modeling. J. Ind. Eng. Chem. 2017, 54, 377–388. [Google Scholar] [CrossRef]
- Idan, I.J.; Nurul, S.; Binti, A.; Abdullah, L.C.; Shean, T.; Choong, Y. Removal of Reactive Anionic Dyes from Binary Solutions by Adsorption onto Quaternized Kenaf Core Fiber. Int. J. Chem. Eng. 2017, 2017, 1–13. [Google Scholar] [CrossRef]
- Regti, A.; Kassimi, A.E.; Laamari, M.R.; Haddad, M. El Competitive adsorption and optimization of binary mixture of textile dyes: A factorial design analysis. J. Ass. Arab Univ. Basic Appl. Sci. 2017, 24, 1–9. [Google Scholar]
- Kurniawan, A.; Sutiono, H.; Indraswati, N.; Ismadji, S. Removal of basic dyes in binary system by adsorption using rarasaponin-bentonite: Revisited of extended Langmuir model. Chem. Eng. J. 2012, 189–190, 264–274. [Google Scholar] [CrossRef]
- Ziane, S.; Bessaha, F.; Marouf-khelifa, K.; Khelifa, A. Single and binary adsorption of reactive black 5 and Congo red on modi fi ed dolomite: Performance and mechanism. J. Mol. Liquid. 2018, 249, 1245–1253. [Google Scholar] [CrossRef]
- Yang, S.; Wu, Y.; Aierken, A.; Zhang, M.; Fang, P.; Fan, Y. Mono/competitive adsorption of Arsenic (III) and Nickel (II) using modified green tea waste. J. Taiwan Inst. Chem. Eng. 2016, 60, 213–221. [Google Scholar] [CrossRef]
- Remenárová, L.; Pipíška, M.; Horník, M.; Augustín, J. Biosorption of cationic dyes BY1, BY2 by moss Rhytidiadelphus squarrosus from binary solutions. Nova Biotechnol. 2009, 9, 239–247. [Google Scholar]
- Noroozi, B.; Sorial, G.A. Applicable models for multi-component adsorption of dyes: A review. J. Environ. Sci. 2013, 25, 419–429. [Google Scholar] [CrossRef]
- Mavinkattimath, R.G.; Kodialbail, V.S. Simultaneous adsorption of Remazol brilliant blue and Disperse orange dyes on red mud and isotherms for the mixed dye system. Environ. Sci. Pollut. Res. 2017, 24, 18912–18925. [Google Scholar] [CrossRef] [PubMed]
- Ahmaruzzaman, M.; Reza, R.A. Decontamination of Cationic and Anionic Dyes in Single and Binary Mode From Aqueous Phase by Mesoporous Pulp Waste. Environ. Prog. Sust. Energy 2015, 34, 724–735. [Google Scholar] [CrossRef]
- Hu, M.; Yan, X.; Hu, X.; Zhang, J.; Feng, R.; Zhou, M. Ultra-high adsorption capacity of MgO/SiO2 composites with rough surfaces for Congo red removal from water. J. Colloid Interf. Sci. 2018, 510, 111–117. [Google Scholar] [CrossRef]
- Hameed, K.S.; Muthirulan, P.; Sundaram, M.M. Adsorption of chromotrope dye onto activated carbons obtained from the seeds of various plants: Equilibrium and kinetics studies. Arab J. Chem. 2017, 10, S2225–S2233. [Google Scholar] [CrossRef]
- Sekulic, M.T.; Boskovic, N.; Milanovic, M.; Grujic, N.; Gligoric, E.; Pap, S. An insight into the adsorption of three emerging pharmaceutical contaminants on multifunctional carbonous adsorbent: Mechanisms, modelling and metal coadsorption. J. Mol. Liquid. 2019, 284, 372–382. [Google Scholar] [CrossRef]
- Lata, H.; Garg, V.K.; Gupta, R.K. Adsorptive removal of basic dye by chemically activated Parthenium biomass: Equilibrium and kinetic modeling. Desalination 2008, 219, 250–261. [Google Scholar] [CrossRef]
Name of the Commercial Dye | Malachite Green, MG | Methylene Blue, MB |
---|---|---|
Colour Index Name | Basic Green 4 | Basic Blue 9 |
λ max (nm) | 617 | 665 |
Molecular Weight (g/mol) | 364.92 | 319.85 |
Charge | (+) | (+) |
Chemical Formula | C23H25ClN2 | C16H18ClN3S |
Dye | Langmuir | Freundlich | ||
---|---|---|---|---|
MG | (mg/g) | 429.18 | (L/mg) | 9.341 |
(mg/g) | 0.0188 | 1.179 | ||
0.8137 | 0.9990 | |||
MB | (mg/g) | 308.64 | (L/mg) | 0.028 |
(mg/g) | 0.0476 | 1.283 | ||
0.8927 | 0.9994 |
Dye in a Binary System | Langmuir Constants | ||
---|---|---|---|
(mg/g) | (L/mg) | ||
MG | 150.97 | 0.0021 | 0.8357 |
MB | 124.61 | 0.0017 | 0.9309 |
Dye in a Binary System | Model Constants | ||
---|---|---|---|
MG | −0.0629 | 0.0891 | 618.12 |
MB | −0.1281 | 0.1734 | 735.52 |
The Dye in the Binary System | Model Constants | |||
---|---|---|---|---|
MG MB | −3.412 | −0.095 | −3.095 | 695.90 |
−0.1281 | 0.1734 | 735.52 | 680.66 |
The Dye in a Binary System | Competition Constants | |||
---|---|---|---|---|
Interactive Effect | ||||
MG | 2.843 | 0.648 | 1.2115 | Antagonistic |
MB | 2.477 | 0.596 | 0.8254 | Antagonistic |
The Dye in a Binary System | Initial Dye Concentration (mg/L) | (mg/g) | PFO Kinetic Model | PSO Kinetic Model | ||||
---|---|---|---|---|---|---|---|---|
(mg/g) | (min−1) | (mg/g) | (g/mg·min) | |||||
MG | 20 | 1.60 | 0.60 | 0.072 | 0.9471 | 1.63 | 0.268 | 0.9993 |
40 | 3.47 | 1.67 | 0.093 | 0.9128 | 3.56 | 0.108 | 0.9989 | |
60 | 5.35 | 0.95 | 0.050 | 0.9209 | 5.39 | 0.181 | 0.9993 | |
80 | 7.25 | 1.21 | 0.058 | 0.8092 | 7.34 | 0.107 | 0.9996 | |
100 | 9.10 | 1.10 | 0.048 | 0.8843 | 9.16 | 0.139 | 0.9999 | |
MB | 20 | 1.71 | 0.44 | 0.074 | 0.9048 | 1.73 | 0.433 | 0.9997 |
40 | 3.55 | 0.55 | 0.063 | 0.8221 | 3.58 | 0.285 | 0.9999 | |
60 | 5.44 | 0.62 | 0.066 | 0.7082 | 5.48 | 0.214 | 0.9999 | |
80 | 7.42 | 0.75 | 0.065 | 0.8101 | 7.46 | 0.225 | 1 | |
100 | 9.37 | 0.88 | 0.054 | 0.7035 | 9.42 | 0.169 | 1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adeyi, A.A.; Jamil, S.N.A.M.; Abdullah, L.C.; Choong, T.S.Y.; Lau, K.L.; Abdullah, M. Simultaneous Adsorption of Cationic Dyes from Binary Solutions by Thiourea-Modified Poly(acrylonitrile-co-acrylic acid): Detailed Isotherm and Kinetic Studies. Materials 2019, 12, 2903. https://doi.org/10.3390/ma12182903
Adeyi AA, Jamil SNAM, Abdullah LC, Choong TSY, Lau KL, Abdullah M. Simultaneous Adsorption of Cationic Dyes from Binary Solutions by Thiourea-Modified Poly(acrylonitrile-co-acrylic acid): Detailed Isotherm and Kinetic Studies. Materials. 2019; 12(18):2903. https://doi.org/10.3390/ma12182903
Chicago/Turabian StyleAdeyi, Abel Adekanmi, Siti Nurul Ain Md Jamil, Luqman Chuah Abdullah, Thomas Shean Yaw Choong, Kia Li Lau, and Mohammad Abdullah. 2019. "Simultaneous Adsorption of Cationic Dyes from Binary Solutions by Thiourea-Modified Poly(acrylonitrile-co-acrylic acid): Detailed Isotherm and Kinetic Studies" Materials 12, no. 18: 2903. https://doi.org/10.3390/ma12182903
APA StyleAdeyi, A. A., Jamil, S. N. A. M., Abdullah, L. C., Choong, T. S. Y., Lau, K. L., & Abdullah, M. (2019). Simultaneous Adsorption of Cationic Dyes from Binary Solutions by Thiourea-Modified Poly(acrylonitrile-co-acrylic acid): Detailed Isotherm and Kinetic Studies. Materials, 12(18), 2903. https://doi.org/10.3390/ma12182903