Numerical Simulation of Electroactive Hydrogels for Cartilage–Tissue Engineering
Abstract
:1. Introduction
2. Electrical-Stimulation Studies of Articular Cartilage
2.1. Direct Coupling
2.1.1. In Vivo Studies
2.1.2. In Vitro Studies
2.2. Indirect Coupling
2.2.1. In Vivo Studies
2.2.2. In Vitro Studies
3. Electroactive Scaffolds for Cartilage–Tissue Engineering
4. Materials and Methods
4.1. Poisson Equation
4.2. Nernst–Planck Equation
5. Results and Discussion
5.1. Chemical Stimulation
5.2. Electrical Stimulation
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mow, V.C.; Ratcliffe, A.; Robin Poole, A. Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures. Biomaterials 1992, 13, 67–97. [Google Scholar] [CrossRef]
- Jahr, H.; Matta, C.; Mobasheri, A. Physicochemical and biomechanical stimuli in cell-based articular cartilage repair. Curr. Rheumatol. Rep. 2015, 17, 22. [Google Scholar] [CrossRef] [PubMed]
- De Mattei, M.; Pellati, A.; Pasello, M.; Ongaro, A.; Setti, S.; Massari, L.; Gemmati, D.; Caruso, A. Effects of physical stimulation with electromagnetic field and insulin growth factor-I treatment on proteoglycan synthesis of bovine articular cartilage. Osteoarthr. Cartil. 2004, 12, 793–800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mow, V.C.; Wang, C.C.; Hung, C.T. The extracellular matrix, interstitial fluid and ions as a mechanical signal transducer in articular cartilage. Osteoarthr. Cartil. 1999, 7, 41–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Servin-Vences, M.R.; Richardson, J.; Lewin, G.R.; Poole, K. Mechanoelectrical transduction in chondrocytes. Clin. Exp. Pharmacol. Physiol. 2018, 45, 481–488. [Google Scholar] [CrossRef] [PubMed]
- Cohen, N.P.; Foster, R.J.; Mow, V.C. Composition and Dynamics of Articular Cartilage: Structure, Function, and Maintaining Healthy State. J. Orthop. Sport. Phys. Ther. 1998, 28, 203–215. [Google Scholar] [CrossRef] [PubMed]
- Fox, A.J.S.; Bedi, A.; Rodeo, S.A. The basic science of articular cartilage: Structure, composition, and function. Sports Health 2009, 1, 461–468. [Google Scholar] [CrossRef]
- Korhonen, R.K.; Julkunen, P.; Jurvelin, J.S.; Saarakkala, S. Structural and compositional changes in peri- and extracellular matrix of osteoarthritic cartilage modulate chondrocyte morphology. Cell. Mol. Bioeng. 2011, 4, 484–494. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, H.W. Emerging properties of hydrogels in tissue engineering. J. Tissue Eng. 2018, 9, 1–4. [Google Scholar] [CrossRef]
- Kwon, H.J. Tissue Engineering of Muscles and Cartilages Using Polyelectrolyte Hydrogels. Adv. Mater. Sci. Eng. 2014, 2014, 154071. [Google Scholar] [CrossRef]
- More, N.; Kapusetti, G. Piezoelectric material—A promising approach for bone and cartilage regeneration. Med. Hypotheses 2017, 108, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Chuang, E.Y.; Chiang, C.W.; Wong, P.C.; Chen, C.H. Hydrogels for the application of articular cartilage tissue Engineering: A review of hydrogels. Adv. Mater. Sci. Eng. 2018, 2018, 4368910. [Google Scholar] [CrossRef]
- Mohammadi, A.; Hill, R.J. Steady electrical and micro-rheological response functions for uncharged colloidal inclusions in polyelectrolyte hydrogels. Proc. R. Soc. A 2010, 466, 213–235. [Google Scholar] [CrossRef]
- Mohammadi, A. Electrokinetic Mixing and Displacement of Charged Droplets in Hydrogels. Transp. Porous Media 2014, 104, 469–499. [Google Scholar] [CrossRef]
- Ning, C.; Zhou, Z.; Tan, G.; Zhu, Y.; Mao, C. Electroactive polymers for tissue regeneration: Developments and perspectives. Prog. Polym. Sci. 2018, 81, 144–162. [Google Scholar] [CrossRef] [PubMed]
- Spiller, K.L.; Maher, S.A.; Lowman, A.M. Hydrogels for the Repair of Articular Cartilage Defects. Tissue Eng. Part B Rev. 2011, 17, 281–299. [Google Scholar] [CrossRef] [Green Version]
- Salinas, E.Y.; Hu, J.C.; Athanasiou, K.A. A Guide for Using Mechanical Stimulation to Enhance Tissue-Engineered Articular Cartilage Properties. Tissue Eng. Part B Rev. 2018, 24, 345–358. [Google Scholar] [CrossRef]
- Farooqi, A.R.; Bader, R.; van Rienen, U. Numerical Study on Electromechanics in Cartilage Tissue with Respect to Its Electrical Properties. Tissue Eng. Part B Rev. 2019, 25, 152–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brady, M.A.; Waldman, S.D.; Ethier, C.R. The Application of Multiple Biophysical Cues to Engineer Functional Neocartilage for Treatment of Osteoarthritis. Part II: Signal Transduction. Tissue Eng. Part B Rev. 2015, 21, 20–33. [Google Scholar] [CrossRef] [PubMed]
- Iwasa, K.; Reddi, A.H. Pulsed Electromagnetic Fields and Tissue Engineering of the Joints. Tissue Eng. Part B Rev. 2018, 24, 144–154. [Google Scholar] [CrossRef]
- Fini, M.; Pagani, S.; Giavaresi, G.; De Mattei, M.; Ongaro, A.; Varani, K.; Vincenzi, F.; Massari, L.; Cadossi, M. Functional tissue engineering in articular cartilage repair: Is there a role for electromagnetic biophysical stimulation? Tissue Eng. Part B Rev. 2013, 19, 353–367. [Google Scholar] [CrossRef] [PubMed]
- Brady, M.A.; Waldman, S.D.; Ethier, C.R. The application of multiple biophysical cues to engineer functional neo-cartilage for treatment of osteoarthritis. Part I: Cellular response. Tissue Eng. Part B Rev. 2015, 21, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Balint, R.; Cassidy, N.J.; Cartmell, S.H. Electrical stimulation: A novel tool for tissue engineering. Tissue Eng. Part B Rev. 2013, 19, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Thrivikraman, G.; Boda, S.; Basu, B. Unraveling the mechanistic effects of electric field stimulation towards directing stem cell fate and function: A tissue engineering perspective. Biomaterials 2018, 150, 60–86. [Google Scholar] [CrossRef] [PubMed]
- McElhaney, J.H.; Stalnaker, R.; Bullard, R. Electric fields and bone loss of disuse. J. Biomech. 1968, 1, 47–52. [Google Scholar] [CrossRef]
- Merrill, D.R.; Bikson, M.; Jefferys, J.G. Electrical stimulation of excitable tissue: Design of efficacious and safe protocols. J. Neurosci. Methods 2005, 141, 171–198. [Google Scholar] [CrossRef] [PubMed]
- Szasz, N. Electric Field Regulation of Chondrocyte Proliferation, Biosynthesis, and Cellular Signaling. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2003. [Google Scholar]
- Brighton, C.T.; Wang, W.; Seldes, R.; Zhang, G.; Pollack, S.R. Signal transduction in electrically stimulated bone cells. J. Bone Jt. Surg. 2001, 83, 1514–1523. [Google Scholar] [CrossRef]
- Vega, S.L.; Kwon, M.Y.; Burdick, J.A. Recent advances in hydrogels for cartilage tissue engineering. Eur. Cells Mater. 2017, 33, 59–75. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, Y.S.; Yue, K.; Khademhosseini, A. Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Acta Biomater. 2017, 57, 1–25. [Google Scholar] [CrossRef]
- Sánchez-Téllez, D.A.; Téllez-Jurado, L.; Rodríguez-Lorenzo, L.M. Hydrogels for cartilage regeneration, from polysaccharides to hybrids. Polymers (Basel) 2017, 9, 671. [Google Scholar] [CrossRef]
- Yuk, H.; Lu, B.; Zhao, X. Hydrogel bioelectronics. Chem. Soc. Rev. 2019, 48, 1642–1667. [Google Scholar] [CrossRef] [PubMed]
- Baker, B.; Spadaro, J.; Marino, A.; Backer, R.O. Electrical stimulation of articular cartilage regeneration. Ann. N. Y. Acad. Sci. 1974, 238, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Baker, B.; Becker, R.O.; Spadaro, J. A study of electrochemical enhancement of articular cartilage repair. Clin. Orthop. Relat. Res. 1974, 102, 251–267. [Google Scholar] [CrossRef] [PubMed]
- Lippiello, L.; Chakkalakal, D.; Connolly, J.F. Pulsing direct current-induced repair of articular cartilage in rabbit osteochondral defects. J. Orthop. Res. 1990, 8, 266–275. [Google Scholar] [CrossRef] [PubMed]
- Frank, E.H.; Grodzinsky, A.J. Cartilage electromechanics-I. Electrokinetic transduction and the effects of electrolyte pH and ionic strength. J. Biomech. 1987, 20, 615–627. [Google Scholar] [CrossRef]
- Frank, E.H.; Grodzinsky, A.J. Cartilage electromechanics-II. A continuum model of cartilage electrokinetics and correlation with experiments. J. Biomech. 1987, 20, 629–639. [Google Scholar] [CrossRef]
- Berkenblit, S.I.; Frank, E.H.; Salant, E.P.; Grodzinsky, A.J. Nondestructive detection of cartilage degeneration using electromechanical surface spectroscopy. J. Biomech. Eng. 1994, 116, 384–392. [Google Scholar] [CrossRef]
- Akkin, T.; Davé, D.P.; Youn, J.I.; Telenkov, S.A.; Rylander, H.G.; Milner, T.E. Imaging Tissue Response to Electrical and Photothermal Stimulation with Nanometer Sensitivity. Lasers Surg. Med. 2003, 33, 219–225. [Google Scholar] [CrossRef]
- Youn, J.I.; Akkin, T.; Milner, T.E. Electrokinetic measurement of cartilage using differential phase optical coherence tomography. Physiol. Meas. 2004, 25, 85–95. [Google Scholar] [CrossRef]
- Gray, M.L. Physical Regulation of Epiphysical Cartilage Biosynthesis: Responses to Electrical, Mechanical and Chemical Signals. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 1986. [Google Scholar]
- MacGinitie, L.A. Electrical and Thermal Modulation of Protein Synthesis in Cartilage: A Model for Field Effects on Biological Tissues. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 1987. [Google Scholar]
- MacGinitie, L.A.; Grodzinsky, A.J.; Frank, E.H.; Gluzband, Y.A. Frequency and amplitude dependence of electric field interactions: Electrokinetics and biosynthesis. In Mechanistic Approaches to Interactions of Electric and Electromagnetic Fields with Living Systems; Blank, M., Findl, E., Eds.; Springer: Boston, MA, USA, 1987; pp. 133–149. [Google Scholar] [CrossRef]
- MacGinitie, L.A.; Gluzband, Y.A.; Grodzinsky, A.J. Electric Field Stimulation Can Increase Protein Synthesis in Articular Cartilage Explants. J. Orthop. Res. 1994, 12, 151–160. [Google Scholar] [CrossRef]
- Nogami, H.; Aoki, H.; Okagawa, T.; Mimatsu, K. Effects of electric current on chondrogenesis in vitro. Clin. Orthop. Relat. Res. 1982, 163, 243–247. [Google Scholar] [CrossRef]
- Chao, P.H.; Roy, R.; Mauck, R.L.; Liu, W.; Valhmu, W.B.; Hung, C.T. Chondrocyte translocation response to direct current electric fields. J. Biomech. Eng. 2000, 122, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Akanji, O.O.; Lee, D.A.; Bader, D.A. The effects of direct current stimulation on isolated chondrocytes seeded in 3D agarose constructs. Biorheology 2008, 45, 229–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, H.J.; Lee, G.S.; Chun, H. Electrical stimulation drives chondrogenesis of mesenchymal stem cells in the absence of exogenous growth factors. Sci. Rep. 2016, 6, 39302. [Google Scholar] [CrossRef] [PubMed]
- Hiemer, B.; Krogull, M.; Bender, T.; Ziebart, J.; Krueger, S.; Bader, R.; Jonitz-Heincke, A. Effect of electric stimulation on human chondrocytes and mesenchymal stem cells under normoxia and hypoxia. Mol. Med. Rep. 2018, 18, 2133–2141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farr, J.; Mont, M.A.; Caldwell, J.R.; Garland, D.; Zizic, T.M. Pulsed electrical stimulation in patients with osteoarthritis of the knee: Follow up in 288 patients who had failed non-operative therapy. Surg. Technol. Int. 2006, 15, 227–233. [Google Scholar]
- Garland, D.; Holt, P.A.; Harrington, J.T.; Caldwell, J.R.; Zizic, T.M.; Cholewczynski, J. A 3-month, randomized, double-blind, placebo-controlled study to evaluate the safety and efficacy of a highly optimized, capacitively coupled, pulsed electrical stimulator in patients with osteoarthritis of the knee. Osteoarthr. Cartil. 2007, 15, 630–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodan, G.A.; Bourret, L.A.; Norton, L.A. DNA synthesis in cartilage cells is stimulated by oscillating electric fields. Science 1978, 199, 690–692. [Google Scholar] [CrossRef] [PubMed]
- Fitzsimmons, R.J.; Gordon, S.L.; Kronberg, J.; Ganey, T.; Pilla, A.A. A pulsing electric field (PEF) increases human chondrocyte proliferation through a transduction pathway involving nitric oxide signaling. J. Orthop. Res. 2008, 26, 854–859. [Google Scholar] [CrossRef]
- Esfandiari, E.; Roshankhah, S.; Mardani, M.; Hashemibeni, B.; Naghsh, E.; Kazemi, M.; Salahshoor, M. The effect of high frequency electric field on enhancement of chondrogenesis in human adipose-derived stem cells. Iran. J. Basic Med. Sci. 2014, 4, 571–576. [Google Scholar]
- Mardani, M.; Roshankhah, S.; Hashemibeni, B.; Salahshoor, M.; Naghsh, E.; Esfandiari, E. Induction of chondrogenic differentiation of human adipose-derived stem cells by low frequency electric field. Adv. Biomed. Res. 2016, 5, 97. [Google Scholar] [CrossRef] [PubMed]
- Brighton, C.T.; Unger, A.S.; Stambough, J.L. In Vitro Growth of Bovine Articular Cartilage Chondrocytes in Various Capacitively Coupled Electrical Fields. J. Orthop. Res. 1984, 2, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, Z.; Zhang, G.; Clark, C.C.; Brighton, C.T. Up-regulation of chondrocyte matrix genes and products by electric fields. Clin. Orthop. Relat. Res. 2004, 427, S163–S173. [Google Scholar] [CrossRef] [PubMed]
- Brighton, C.T.; Wang, W.; Clark, C.C. Up-regulation of matrix in bovine articular cartilage explants by electric fields. Biochem. Biophys. Res. Commun. 2006, 342, 556–561. [Google Scholar] [CrossRef] [PubMed]
- Brighton, C.T.; Wang, W.; Clark, C.C. The effect of electrical fields on gene and protein expression in human osteoarthritic cartilage explants. J. Bone Jt. Surg. 2008, 90, 833–848. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wang, W.; Clark, C.C.; Brighton, C.T. Signal transduction in electrically stimulated articular chondrocytes involves translocation of extracellular calcium through voltage-gated channels. Osteoarthr. Cartil. 2009, 17, 397–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brighton, C.T.; Wang, W.; Clark, C.C.; Praestgaard, A. A Spectrophotometric Analysis of Human Osteoarthritic Cartilage Explants Subjected to Specific Capacitively Coupled Electric Fields. Open J. Biophys. 2013, 158–164. [Google Scholar] [CrossRef]
- Hernández-Bule, M.L.; Paíno, C.L.; Trillo, M.Á.; Úbeda, A. Electric stimulation at 448 kHz promotes proliferation of human mesenchymal stem cells. Cell. Physiol. Biochem. 2014, 34, 1741–1755. [Google Scholar] [CrossRef] [PubMed]
- Vaca-González, J.J.; Guevara, J.M.; Vega, J.F.; Garzón-Alvarado, D.A. An In Vitro Chondrocyte Electrical Stimulation Framework: A Methodology to Calculate Electric Fields and Modulate Proliferation, Cell Death and Glycosaminoglycan Synthesis. Cell. Mol. Bioeng. 2016, 9, 116–126. [Google Scholar] [CrossRef]
- Vaca-González, J.J.; Escobar, J.F.; Guevara, J.M.; Hata, Y.A.; Gallego Ferrer, G.; Garzón-Alvarado, D.A. Capacitively coupled electrical stimulation of rat chondroepiphysis explants: A histomorphometric analysis. Bioelectrochemistry 2019, 126, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Vaca-González, J.J. The Effect of Electric Fields on Hyaline Cartilage: An in vitro and in Silico Study. Ph.D. Thesis, Universidad Nacional de Colombia, Bogotá, Colombia, Universitat Politècnica de València, Valencia, Spain, 2019. [Google Scholar] [CrossRef]
- Holmes, J.W. Model First and Ask Questions Later: Confessions of a Reformed Experimentalist. J. Biomech. Eng. 2019, 141, 074701. [Google Scholar] [CrossRef] [PubMed]
- Doulabi, A.H.; Mequanint, K.; Mohammadi, H. Blends and nanocomposite biomaterials for articular cartilage tissue engineering. Materials (Basel) 2014, 7, 5327–5355. [Google Scholar] [CrossRef] [PubMed]
- Ansari, M.; Eshghanmalek, M. Biomaterials for repair and regeneration of the cartilage tissue. Bio-Design Manuf. 2019, 2, 41–49. [Google Scholar] [CrossRef]
- Madeira, C.; Santhagunam, A.; Salgueiro, J.B.; Cabral, J. Advanced cell therapies for articular cartilage regeneration. Trends Biotechnol. 2015, 33, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Jacob, J.; More, N.; Kalia, K.; Kapusetti, G. Piezoelectric smart biomaterials for bone and cartilage tissue engineering. Inflamm. Regen. 2018, 38, 2. [Google Scholar] [CrossRef] [PubMed]
- Flory, P.J. Principles of Polymer Chemistry; Cornell University Press: Ithaca, NY, USA, 1953. [Google Scholar]
- Donnan, F.G. The theory of membrane equilibria. Chem. Rev. 1924, 1, 73–90. [Google Scholar] [CrossRef]
- Shiga, T.; Kurauchi, T. Deformation of polyelectrolyte gels under the influence of electric field. J. Appl. Polym. Sci. 1990, 39, 2305–2320. [Google Scholar] [CrossRef]
- Doi, M.; Matsumoto, M.; Hirose, Y. Deformation of Ionic Polymer Gels by Electric Fields. Macromolecules 1992, 25, 5504–5511. [Google Scholar] [CrossRef]
- Grimshaw, P.E.; Nussbaum, J.H.; Grodzinsky, A.J.; Yarmush, M.L. Kinetics of electrically and chemically induced swelling in polyelectrolyte gels. J. Chem. Phys. 1990, 93, 4462–4472. [Google Scholar] [CrossRef]
- Lai, W.M.; Hou, J.S.; Mow, V.C. A triphasic theory for the swelling and deformation behaviors of articular cartilage. J. Biomech. Eng. 1991, 113, 245–258. [Google Scholar] [CrossRef]
- Gu, W.Y.; Lai, W.M.; Mow, V.C. A Mixture Theory for Charged-Hydrated Soft Tissues Containing Multi-electrolytes: Passive Transport and Swelling Behaviors. J. Biomech. Eng. 1998, 120, 169–180. [Google Scholar] [CrossRef] [PubMed]
- Mow, V.C.; Kuei, S.C.; Lai, W.M.; Armstrong, C.G. Biphasic creep and stress relaxation of articular cartilage in compression: Theory and experiments. J. Biomech. Eng. 1980, 102, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Hon, Y.C.; Sun, S.; Mak, A.F.T. Numerical simulation of the steady-state deformation of a smart hydrogel under an external electric field. Smart Mater. Struct. 2002, 11, 459–467. [Google Scholar] [CrossRef]
- Li, H.; Yuan, Z.; Lam, K.Y.; Lee, H.P.; Chen, J.; Hanes, J.; Fu, J. Model development and numerical simulation of electric-stimulus-responsive hydrogels subject to an externally applied electric field. Biosens. Bioelectron. 2004, 19, 1097–1107. [Google Scholar] [CrossRef] [PubMed]
- Wallmersperger, T.; Kröplin, B.; Holdenried, J.; Gülch, R.W. A Coupled multi-field-formulation for ionic polymer gels in electric fields. In Proceedings of the SPIE’s 8th Annual International Symposium on Smart Structures and Materials, Beach, CA, USA, 3–8 March 2001; pp. 264–275. [Google Scholar] [CrossRef]
- Wallmersperger, T.; Kröplin, B.; Gülch, R.W. Coupled chemo-electro-mechanical formulation for ionic polymer gels—Numerical and experimental investigations. Mech. Mater. 2004, 36, 411–420. [Google Scholar] [CrossRef]
- Ghantasala, M.K.; Suthar, K.J.; Mancini, D.C. Steady-State Simulation of the Chemo-Electro-Mechanical Behaviour of Hydrogels. Int. J. Model. Simul. 2010, 30, 396–404. [Google Scholar] [CrossRef]
- Logg, A.; Mardal, K.A.; Wells, G.N. (Eds.) Automated Solution of Differential Equations by the Finite Element Method_The FEniCS Book; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef]
- Ayachit, U. The ParaView Guide: A Parallel Visualization Application; Kitware, Inc.: Clifton Park, NY, USA, 2015. [Google Scholar]
- Geuzaine, C.; Remacle, J.F. Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 2009, 79, 1309–1331. [Google Scholar] [CrossRef]
- Van Rienen, U. Numerical Methods in Computational Electrodynamics_Linear Systems in Practical Applications, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar] [CrossRef]
- Langtangen, H.P.; Mardal, K.A. Introduction to Numerical Methods for Variational Problems, 1st ed.; Texts in Computational Science and Engineering; Springer International Publishing: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Helfferich, F. Ion Exchange; McGraw-Hill Book Company, Inc.: New York, NY, USA, 1962. [Google Scholar]
- Nernst, W. Zur Kinetik der in Lösung befindlichen Körper. Z. für Phys. Chem. 1888, 2U, 613–637. [Google Scholar] [CrossRef]
- Nernst, W. Die elektromotorische Wirksamkeit der Jonen. Z. für Phys. Chem. 1889, 4U, 129–181. [Google Scholar] [CrossRef]
- Planck, M. Ueber die Erregung von Electricität und Wärme in Electrolyten. Ann. Phys. 1890, 275, 161–186. [Google Scholar] [CrossRef]
- Bruce, P.G. (Ed.) Solid State Electrochemistry; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar] [CrossRef]
- Abali, B.E. Computational Reality_Solving Nonlinear and Coupled Problems in Continuum Mechanics; Springer: Singapore, 2017. [Google Scholar] [CrossRef]
- Brezzi, F.; Fortin, M. (Eds.) Mixed and Hybrid Finite Element Methods; Springer Series in Computational Mathematics; Springer: New York, NY, USA, 1991; Volume 15. [Google Scholar] [CrossRef]
- Larson, M.G.; Bengzon, F. The Finite Element Method: Theory, Implementation, and Applications; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Gockenbach, M.S. Understanding and lmplementing the Finite Element Method; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2006. [Google Scholar] [CrossRef]
- Huyghe, J.M.; Janssen, J.D. Quadriphasic Mechanics of Swelling Incompressible Porous Media. Int. J. Eng. Sci. 1997, 35, 793–802. [Google Scholar] [CrossRef]
- Yu, C.; Malakpoor, K.; Huyghe, J.M. A three-dimensional transient mixed hybrid finite element model for superabsorbent polymers with strain-dependent permeability. Soft Matter 2018, 14, 3834–3848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basser, P.J.; Grodzinsky, A.J. The Donnan model derived from microstructure. Biophys. Chem. 1993, 46, 57–68. [Google Scholar] [CrossRef]
- Buschmann, M.D.; Grodzinsky, A.J. A molecular model of proteoglycan-associated electrostatic forces in cartilage mechanics. J. Biomech. Eng. 1995, 117, 179–192. [Google Scholar] [CrossRef] [PubMed]
- Overbeek, J. The Donnan Equilibrium. Prog. Biophys. Biophys. Chem. 1956, 6, 57–84. [Google Scholar] [CrossRef]
- Gülch, R.W.; Holdenried, J.; Weible, A.; Wallmersperger, T.; Kröplin, B. Polyelectrolyte gels in electric fields: A theoretical and experimental approach. In Proceedings of the SPIE’s 7th Annual International Symposium on Smart Structures and Materials, Beach, CA, USA, 6–8 March 2000; Volume 3987, pp. 193–202. [Google Scholar] [CrossRef]
- Patel, J.M.; Saleh, K.S.; Burdick, J.A.; Mauck, R.L. Bioactive factors for cartilage repair and regeneration: Improving delivery, retention, and activity. Acta Biomater. 2019, 93, 222–238. [Google Scholar] [CrossRef] [PubMed]
Parameter | Value |
---|---|
Cation valence | 1.0 |
Anion valence | −1.0 |
Bound charge valence | −1.0 |
Ion mobility | m2 s−1 V−1 |
Ion diffusion coefficient | m2 s−1 |
Faraday constant F | C mol−1 |
Temperature T | 293 K |
Gas constant R | J mol−1 K−1 |
Vacuum permittivity | A s V−1 m−1 |
Relatively permittivity | 100.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farooqi, A.R.; Zimmermann, J.; Bader, R.; van Rienen, U. Numerical Simulation of Electroactive Hydrogels for Cartilage–Tissue Engineering. Materials 2019, 12, 2913. https://doi.org/10.3390/ma12182913
Farooqi AR, Zimmermann J, Bader R, van Rienen U. Numerical Simulation of Electroactive Hydrogels for Cartilage–Tissue Engineering. Materials. 2019; 12(18):2913. https://doi.org/10.3390/ma12182913
Chicago/Turabian StyleFarooqi, Abdul Razzaq, Julius Zimmermann, Rainer Bader, and Ursula van Rienen. 2019. "Numerical Simulation of Electroactive Hydrogels for Cartilage–Tissue Engineering" Materials 12, no. 18: 2913. https://doi.org/10.3390/ma12182913
APA StyleFarooqi, A. R., Zimmermann, J., Bader, R., & van Rienen, U. (2019). Numerical Simulation of Electroactive Hydrogels for Cartilage–Tissue Engineering. Materials, 12(18), 2913. https://doi.org/10.3390/ma12182913