Functional Ferroic Domain Walls for Nanoelectronics
Abstract
:1. Introduction
2. Intrinsic Structure and Chirality of Domain Walls
3. Conduction at Domain Walls
4. Light Interaction with Domain Walls
- Light can function as a detection tool to investigate ferroic properties at the walls.
- Light can be used to manipulate domain and domain-wall states.
- Domains and domain walls in ferroelectrics exhibit a photovoltaic (PV) effect much like solar cells.
5. Magnetic Properties
6. Solid-State Domain Wall Device Concepts
6.1. Ferroelectric Domain Wall Injection and Displacement
6.2. Ferroelectric Domain Wall Memory
6.3. Multilevel Domain Wall Devices
6.4. Nondestructive Readout of Ferroelectric Domains
6.5. Other Novel Device Concepts
7. Summary
Funding
Conflicts of Interest
References
- Seidel, J. Domain Walls as Nanoscale Functional Elements. J. Phys. Chem. Lett. 2012, 3, 2905–2909. [Google Scholar] [CrossRef]
- Whyte, J.R.; Gregg, J.M. A diode for ferroelectric domain-wall motion. Nat. Commun. 2015, 6, 7361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, P.; Zhang, Q.; Sando, D.; Lei, C.H.; Liu, Y.; Li, J.; Nagarajan, V.; Seidel, J. Nonvolatile ferroelectric domain wall memory. Sci. Adv. 2017, 3, e1700512. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Santolino, G.; Tornos, D.; Hernandez-Martin, J.I.; Beltran, C.; Munuera, M.; Cabero, A.; Perez-Munoz, J.; Ricote, F.; Mompean, M.; Garcia-Hernandez, Z.; et al. Resonant electron tunnelling assisted by charged domain walls in multiferroic tunnel junctions. Nat. Nanotechnol. 2017, 12, 655–662. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Marcos, F.; Ochoa, D.A.; Del Campo, A.; García, M.A.; Castro, G.R.; Fernández, J.F.; García, J.E. Reversible optical control of macroscopic polarization in ferroelectrics. Nat. Photonics 2018, 12, 29–32. [Google Scholar] [CrossRef]
- Salje, E. Phase transitions in ferroelastic and co-elastic crystals. Ferroelectrics 1990, 104, 111–120. [Google Scholar] [CrossRef]
- Padilla, J.; Zhong, W.; Vanderbilt, D. First-principles investigation of 180° domain walls in BaTiO3. Phys. Rev. B 1996, 53, R5969–R5973. [Google Scholar] [CrossRef] [PubMed]
- Meyer, B.; Vanderbilt, D. Ab initio study of ferroelectric domain walls in PbTiO3. Phys. Rev. B 2002, 65, 104111. [Google Scholar] [CrossRef]
- Gareeva, Z.; Diéguez, O.; Íñiguez, J.; Zvezdin, A.K. Complex domain walls in BiFeO3. Phys. Rev. B Condens. Matter Mater. Phys. 2015, 91, 4–7. [Google Scholar] [CrossRef]
- Přívratská, J.; Janovec, V. Pyromagnetic domain walls connecting antiferromagnetic non-ferroelastic magnetoelectric domains. Ferroelectrics 1997, 204, 321–331. [Google Scholar] [CrossRef]
- Přívratská, J.; Janovec, V. Spontaneous polarization and/or magnetization in non-ferroelastic domain walls: Symmetry predictions. Ferroelectrics 1999, 222, 23–32. [Google Scholar] [CrossRef]
- Ren, W.; Yang, Y.; Diéguez, O.; Íñiguez, J.; Choudhury, N.; Bellaiche, L. Ferroelectric Domains in Multiferroic BiFeO3 Films under Epitaxial Strains. Phys. Rev. Lett. 2013, 110, 187601. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zheng, F.; Koocher, N.Z.; Takenaka, H.; Wang, F.; Rappe, A.M. Ferroelectric Domain Wall Induced Band Gap Reduction and Charge Separation in Organometal Halide Perovskites. J. Phys. Chem. Lett. 2015, 6, 693–699. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Xu, H.; Dierolf, V.; Gopalan, V.; Phillpot, S.R. Structure and energetics of ferroelectric domain walls in LiNbO3 from atomic-level simulations. Phys. Rev. B 2010, 82, 014104. [Google Scholar] [CrossRef]
- Seidel, J.; Trassin, M.; Zhang, Y.; Maksymovych, P.; Uhlig, T.; Milde, P.; Köhler, D.; Baddorf, A.P.; Kalinin, S.V.; Eng, L.M.; et al. Electronic Properties of Isosymmetric Phase Boundaries in Highly Strained Ca-Doped BiFeO3. Adv. Mater. 2014, 26, 4376–4380. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-E.; Jang, B.-K.; Heo, Y.; Hong Lee, J.; Jeong, M.; Lee, J.Y.; Seidel, J.; Yang, C.-H. Electric control of straight stripe conductive mixed-phase nanostructures in La-doped BiFeO3. NPG Asia Mater. 2014, 6, e81. [Google Scholar] [CrossRef]
- Farokhipoor, S.; Magén, C.; Venkatesan, S.; Íñiguez, J.; Daumont, C.J.M.; Rubi, D.; Snoeck, E.; Mostovoy, M.; de Graaf, C.; Müller, A.; et al. Artificial chemical and magnetic structure at the domain walls of an epitaxial oxide. Nature 2014, 515, 379–383. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Behera, R.K.; Wu, P.; Xu, H.; Li, Y.L.; Sinnott, S.B.; Phillpot, S.R.; Chen, L.Q.; Gopalan, V. Mixed Bloch-Néel-Ising character of 180° ferroelectric domain walls. Phys. Rev. B 2009, 80, 060102. [Google Scholar] [CrossRef]
- Lubk, A.; Rossell, M.D.; Seidel, J.; He, Q.; Yang, S.Y.; Chu, Y.H.; Ramesh, R.; Hÿtch, M.J.; Snoeck, E. Evidence of Sharp and Diffuse Domain Walls in BiFeO3 by Means of Unit-Cell-Wise Strain and Polarization Maps Obtained with High Resolution Scanning Transmission Electron Microscopy. Phys. Rev. Lett. 2012, 109, 047601. [Google Scholar] [CrossRef]
- Lubk, A.; Rossell, M.D.; Seidel, J.; Chu, Y.H.; Ramesh, R.; Hÿtch, M.J.; Snoeck, E. Electromechanical Coupling among Edge Dislocations, Domain Walls, and Nanodomains in BiFeO3 Revealed by Unit-Cell-Wise Strain and Polarization Maps. Nano Lett. 2013, 13, 1410–1415. [Google Scholar] [CrossRef]
- Houchmandzadeh, B.; Lajzerowicz, J.; Salje, E. Order parameter coupling and chirality of domain walls. J. Phys. Condens. Matter 1991, 3, 5163–5169. [Google Scholar] [CrossRef]
- Stepkova, V.; Marton, P.; Hlinka, J. Stress-induced phase transition in ferroelectric domain walls of BaTiO3. J. Phys. Condens. Matter 2012, 24, 212201. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.-K.; Jia, C.-L.; Sluka, T.; Wang, B.-X.; Ye, Z.-G.; Setter, N. Néel-like domain walls in ferroelectric Pb(Zr,Ti)O3 single crystals. Nat. Commun. 2016, 7, 12385. [Google Scholar] [CrossRef] [PubMed]
- Salje, E.K.H.; Scott, J.F. Ferroelectric Bloch-line switching: A paradigm for memory devices? Appl. Phys. Lett. 2014, 105, 252904. [Google Scholar] [CrossRef]
- Cherifi-Hertel, S.; Bulou, H.; Hertel, R.; Taupier, G.; Dorkenoo, K.D.; Andreas, C.; Guyonnet, J.; Gaponenko, I.; Gallo, K.; Paruch, P. Non-Ising and chiral ferroelectric domain walls revealed by nonlinear optical microscopy. Nat. Commun. 2017, 8, 15768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seidel, J.; Singh-Bhalla, G.; He, Q.; Yang, S.-Y.; Chu, Y.-H.; Ramesh, R. Domain wall functionality in BiFeO3. Phase Transit. 2013, 86, 53–66. [Google Scholar] [CrossRef]
- Salje, E.K.H.; Wang, X.; Ding, X.; Scott, J.F. Ultrafast Switching in Avalanche-Driven Ferroelectrics by Supersonic Kink Movements. Adv. Funct. Mater. 2017, 27, 1700367. [Google Scholar] [CrossRef]
- Sluka, T.; Tagantsev, A.K.; Bednyakov, P.; Setter, N. Free-electron gas at charged domain walls in insulating BaTiO3. Nat. Commun. 2013, 4, 1808. [Google Scholar] [CrossRef]
- Aird, A.; Salje, E.K.H. Sheet superconductivity in twin walls: Experimental evidence of WO3−x. J. Phys. Condens. Matter 1998, 10, L377–L380. [Google Scholar] [CrossRef]
- Seidel, J.; Martin, L.W.; He, Q.; Zhan, Q.; Chu, Y.H.; Rother, A.; Hawkridge, M.E.; Maksymovych, P.; Yu, P.; Gajek, M.; et al. Conduction at domain walls in oxide multiferroics. Nat. Mater. 2009, 8, 229–234. [Google Scholar] [CrossRef] [Green Version]
- Farokhipoor, S.; Noheda, B. Conduction through 71° domain walls in BiFeO3 thin films. Phys. Rev. Lett. 2011, 107, 3–6. [Google Scholar] [CrossRef] [PubMed]
- Guyonnet, J.; Gaponenko, I.; Gariglio, S.; Paruch, P. Conduction at domain walls in insulating Pb(Zr0.2Ti0.8)O3 thin films. Adv. Mater. 2011, 23, 5377–5382. [Google Scholar] [CrossRef] [PubMed]
- Schröder, M.; Haußmann, A.; Thiessen, A.; Soergel, E.; Woike, T.; Eng, L.M. Conducting Domain Walls in Lithium Niobate Single Crystals. Adv. Funct. Mater. 2012, 22, 3936–3944. [Google Scholar] [CrossRef]
- Cho, Y. Electrical conduction in nanodomains in congruent lithium tantalate single crystal. Appl. Phys. Lett. 2014, 104, 042905. [Google Scholar] [CrossRef]
- Lindgren, G.; Canalias, C. Domain wall conductivity in KTiOPO4 crystals. APL Mater. 2017, 5, 076108. [Google Scholar] [CrossRef]
- Wu, W.; Horibe, Y.; Lee, N.; Cheong, S.-W.; Guest, J.R. Conduction of Topologically Protected Charged Ferroelectric Domain Walls. Phys. Rev. Lett. 2012, 108, 077203. [Google Scholar] [CrossRef] [Green Version]
- Meier, D.; Seidel, J.; Cano, A.; Delaney, K.; Kumagai, Y.; Mostovoy, M.; Spaldin, N.A.; Ramesh, R.; Fiebig, M. Anisotropic conductance at improper ferroelectric domain walls. Nat. Mater. 2012, 11, 284–288. [Google Scholar] [CrossRef] [Green Version]
- Oh, Y.S.; Luo, X.; Huang, F.T.; Wang, Y.; Cheong, S.W. Experimental demonstration of hybrid improper ferroelectricity and the presence of abundant charged walls in (Ca,Sr)3Ti2O7 crystals. Nat. Mater. 2015, 14, 407–413. [Google Scholar] [CrossRef]
- McQuaid, R.G.P.; Campbell, M.P.; Whatmore, R.W.; Kumar, A.; Gregg, J.M. Injection and controlled motion of conducting domain walls in improper ferroelectric Cu-Cl boracite. Nat. Commun. 2017, 8, 15105. [Google Scholar] [CrossRef] [Green Version]
- Yasuda, K.; Mogi, M.; Yoshimi, R.; Tsukazaki, A.; Takahashi, K.S.; Kawasaki, M.; Kagawa, F.; Tokura, Y. Quantized chiral edge conduction on domain walls of a magnetic topological insulator. Science 2017, 358, 1311–1314. [Google Scholar] [CrossRef] [Green Version]
- Fujita, T.C.; Uchida, M.; Kozuka, Y.; Sano, W.; Tsukazaki, A.; Arima, T.; Kawasaki, M. All-in-all-out magnetic domain wall conduction in a pyrochlore iridate heterointerface. Phys. Rev. B 2016, 93, 064419. [Google Scholar] [CrossRef] [Green Version]
- Lubk, A.; Gemming, S.; Spaldin, N.A. First-principles study of ferroelectric domain walls in multiferroic bismuth ferrite. Phys. Rev. B 2009, 80, 104110. [Google Scholar] [CrossRef] [Green Version]
- Marton, P.; Rychetsky, I.; Hlinka, J. Domain walls of ferroelectric BaTiO3 within the Ginzburg-Landau-Devonshire phenomenological model. Phys. Rev. B 2010, 81, 144125. [Google Scholar] [CrossRef]
- Eliseev, E.A.; Morozovska, A.N.; Gu, Y.; Borisevich, A.Y.; Chen, L.-Q.; Gopalan, V.; Kalinin, S.V. Conductivity of twin-domain-wall/surface junctions in ferroelastics: Interplay of deformation potential, octahedral rotations, improper ferroelectricity, and flexoelectric coupling. Phys. Rev. B 2012, 86, 085416. [Google Scholar] [CrossRef]
- Stolichnov, I.; Iwanowska, M.; Colla, E.; Ziegler, B.; Gaponenko, I.; Paruch, P.; Huijben, M.; Rijnders, G.; Setter, N. Persistent conductive footprints of 109° domain walls in bismuth ferrite films. Appl. Phys. Lett. 2014, 104, 2–5. [Google Scholar] [CrossRef]
- Palai, R.; Katiyar, R.S.; Schmid, H.; Tissot, P.; Clark, S.J.; Robertson, J.; Redfern, S.A.T.; Catalan, G.; Scott, J.F. β phase and γ−β metal-insulator transition in multiferroic BiFeO3. Phys. Rev. B 2008, 77, 014110. [Google Scholar] [CrossRef]
- Choi, T.; Horibe, Y.; Yi, H.T.; Choi, Y.J.; Wu, W.; Cheong, S.W. Insulating interlocked ferroelectric and structural antiphase domain walls in multiferroic YMnO3. Nat. Mater. 2010, 9, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Hong, L.; Soh, A.K.; Du, Q.G.; Li, J.Y. Interaction of O vacancies and domain structures in single crystal BaTiO3: Two-dimensional ferroelectric model. Phys. Rev. B 2008, 77, 094104. [Google Scholar] [CrossRef]
- Wojdeł, J.C.; Íñiguez, J. Ferroelectric Transitions at Ferroelectric Domain Walls Found from First Principles. Phys. Rev. Lett. 2014, 112, 247603. [Google Scholar] [CrossRef] [Green Version]
- Behera, R.K.; Lee, C.-W.; Lee, D.; Morozovska, A.N.; Sinnott, S.B.; Asthagiri, A.; Gopalan, V.; Phillpot, S.R. Structure and energetics of 180° domain walls in PbTiO3 by density functional theory. J. Phys. Condens. Matter 2011, 23, 175902. [Google Scholar] [CrossRef]
- Taherinejad, M.; Vanderbilt, D.; Marton, P.; Stepkova, V.; Hlinka, J. Bloch-type domain walls in rhombohedral BaTiO3. Phys. Rev. B 2012, 86, 155138. [Google Scholar] [CrossRef]
- Eliseev, E.A.; Yudin, P.V.; Kalinin, S.V.; Setter, N.; Tagantsev, A.K.; Morozovska, A.N. Structural phase transitions and electronic phenomena at 180-degree domain walls in rhombohedral BaTiO3. Phys. Rev. B 2013, 87, 054111. [Google Scholar] [CrossRef]
- Yudin, P.V.; Tagantsev, A.K.; Eliseev, E.A.; Morozovska, A.N.; Setter, N. Bichiral structure of ferroelectric domain walls driven by flexoelectricity. Phys. Rev. B 2012, 86, 134102. [Google Scholar] [CrossRef]
- Seidel, J.; Maksymovych, P.; Batra, Y.; Katan, A.; Yang, S.-Y.; He, Q.; Baddorf, A.P.; Kalinin, S.V.; Yang, C.-H.; Yang, J.-C.; et al. Domain Wall Conductivity in La-Doped BiFeO3. Phys. Rev. Lett. 2010, 105, 197603. [Google Scholar] [CrossRef]
- Rojac, T.; Bencan, A.; Drazic, G.; Sakamoto, N.; Ursic, H.; Jancar, B.; Tavcar, G.; Makarovic, M.; Walker, J.; Malic, B.; et al. Domain-wall conduction in ferroelectric BiFeO3 controlled by accumulation of charged defects. Nat. Mater. 2017, 16, 322–327. [Google Scholar] [CrossRef]
- Morozovska, A.N.; Vasudevan, R.K.; Maksymovych, P.; Kalinin, S.V.; Eliseev, E.A. Anisotropic conductivity of uncharged domain walls in BiFeO3. Phys. Rev. B 2012, 86, 085315. [Google Scholar] [CrossRef]
- Campbell, M.P.; McConville, J.P.V.; McQuaid, R.G.P.; Prabhakaran, D.; Kumar, A.; Gregg, J.M. Hall effect in charged conducting ferroelectric domain walls. Nat. Commun. 2016, 7, 1–6. [Google Scholar] [CrossRef]
- Turner, P.W.; McConville, J.P.V.; McCartan, S.J.; Campbell, M.H.; Schaab, J.; McQuaid, R.G.P.; Kumar, A.; Gregg, J.M. Large Carrier Mobilities in ErMnO3 Conducting Domain Walls Revealed by Quantitative Hall-Effect Measurements. Nano Lett. 2018, 18, 6381–6386. [Google Scholar] [CrossRef]
- Wu, X.; Petralanda, U.; Zheng, L.; Ren, Y.; Hu, R.; Cheong, S.-W.; Artyukhin, S.; Lai, K. Low-energy structural dynamics of ferroelectric domain walls in hexagonal rare-earth manganites. Sci. Adv. 2017, 3, e1602371. [Google Scholar] [CrossRef]
- Grekov, A.A.; Adonin, A.A.; Protsenko, N.P. Encountering domains in SbSI. Ferroelectrics 1976, 13, 483–485. [Google Scholar] [CrossRef]
- Vul, B.M.; Guro, G.M.; Ivanchik, I.I. Encountering domains in ferroelectrics. Ferroelectrics 1973, 6, 29–31. [Google Scholar] [CrossRef]
- Meier, D. Functional domain walls in multiferroics. J. Phys. Condens. Matter 2015, 27, 463003. [Google Scholar] [CrossRef]
- Morozovska, A.N. Domain Wall Conduction in Ferroelectrics. Ferroelectrics 2012, 438, 3–19. [Google Scholar] [CrossRef]
- Eliseev, E.A.; Morozovska, A.N.; Svechnikov, G.S.; Gopalan, V.; Shur, V.Y. Static conductivity of charged domain walls in uniaxial ferroelectric semiconductors. Phys. Rev. B Condens. Matter Mater. Phys. 2011, 83, 1–8. [Google Scholar] [CrossRef]
- Bednyakov, P.S.; Sluka, T.; Tagantsev, A.K.; Damjanovic, D.; Setter, N. Formation of charged ferroelectric domain walls with controlled periodicity. Sci. Rep. 2015, 5, 11–14. [Google Scholar] [CrossRef]
- Vasudevan, R.K.; Morozovska, A.N.; Eliseev, E.A.; Britson, J.; Yang, J.C.; Chu, Y.H.; Maksymovych, P.; Chen, L.Q.; Nagarajan, V.; Kalinin, S.V. Domain wall geometry controls conduction in ferroelectrics. Nano Lett. 2012, 12, 5524–5531. [Google Scholar] [CrossRef]
- Werner, C.S.; Herr, S.J.; Buse, K.; Sturman, B.; Soergel, E.; Razzaghi, C.; Breunig, I. Large and accessible conductivity of charged domain walls in lithium niobate. Sci. Rep. 2017, 7, 9862. [Google Scholar] [CrossRef]
- Li, L.; Britson, J.; Jokisaari, J.R.; Zhang, Y.; Adamo, C.; Melville, A.; Schlom, D.G.; Chen, L.-Q.; Pan, X. Giant Resistive Switching via Control of Ferroelectric Charged Domain Walls. Adv. Mater. 2016, 28, 6574–6580. [Google Scholar] [CrossRef]
- Godau, C.; Kämpfe, T.; Thiessen, A.; Eng, L.M.; Haußmann, A. Enhancing the Domain Wall Conductivity in Lithium Niobate Single Crystals. ACS Nano 2017, 11, 4816–4824. [Google Scholar] [CrossRef]
- Pawlik, A.S.; Kämpfe, T.; Haußmann, A.; Woike, T.; Treske, U.; Knupfer, M.; Büchner, B.; Soergel, E.; Streubel, R.; Koitzsch, A.; et al. Polarization driven conductance variations at charged ferroelectric domain walls. Nanoscale 2017, 9, 10933–10939. [Google Scholar] [CrossRef]
- Bednyakov, P.S.; Sturman, B.I.; Sluka, T.; Tagantsev, A.K.; Yudin, P.V. Physics and applications of charged domain walls. npj Comput. Mater. 2018, 4, 65. [Google Scholar] [CrossRef]
- Rubio-Marcos, F.; Del Campo, A.; Rojas-Hernandez, R.E.; Ramírez, M.O.; Parra, R.; Ichikawa, R.U.; Ramajo, L.A.; Bausá, L.E.; Fernández, J.F. Experimental evidence of charged domain walls in lead-free ferroelectric ceramics: Light-driven nanodomain switching. Nanoscale 2018, 10, 705–715. [Google Scholar] [CrossRef]
- Balke, N.; Choudhury, S.; Jesse, S.; Huijben, M.; Chu, Y.H.; Baddorf, A.P.; Chen, L.Q.; Ramesh, R.; Kalinin, S.V. Deterministic control of ferroelastic switching in multiferroic materials. Nat. Nanotechnol. 2009, 4, 868–875. [Google Scholar] [CrossRef]
- Crassous, A.; Sluka, T.; Tagantsev, A.K.; Setter, N. Polarization charge as a reconfigurable quasi-dopant in ferroelectric thin films. Nat. Nanotechnol. 2015, 10, 614–618. [Google Scholar] [CrossRef]
- Balke, N.; Winchester, B.; Ren, W.; Chu, Y.H.; Morozovska, A.N.; Eliseev, E.A.; Huijben, M.; Vasudevan, R.K.; Maksymovych, P.; Britson, J.; et al. Enhanced electric conductivity at ferroelectric vortex cores in BiFeO3. Nat. Phys. 2012, 8, 81–88. [Google Scholar] [CrossRef]
- Baek, S.H.; Jang, H.W.; Folkman, C.M.; Li, Y.L.; Winchester, B.; Zhang, J.X.; He, Q.; Chu, Y.H.; Nelson, C.T.; Rzchowski, M.S.; et al. Ferroelastic switching for nanoscale non-volatile magnetoelectric devices. Nat. Mater. 2010, 9, 309–314. [Google Scholar] [CrossRef]
- Ma, J.; Ma, J.; Zhang, Q.; Peng, R.; Wang, J.; Liu, C.; Wang, M.; Li, N.; Chen, M.; Cheng, X.; et al. Controllable conductive readout in self-assembled, topologically confined ferroelectric domain walls. Nat. Nanotechnol. 2018, 13, 947–952. [Google Scholar] [CrossRef]
- Kim, K.-E.; Jeong, S.; Chu, K.; Lee, J.H.; Kim, G.-Y.; Xue, F.; Koo, T.Y.; Chen, L.-Q.; Choi, S.-Y.; Ramesh, R.; et al. Configurable topological textures in strain graded ferroelectric nanoplates. Nat. Commun. 2018, 9, 403. [Google Scholar] [CrossRef]
- Kim, K.-E.; Kim, Y.-J.; Zhang, Y.; Xue, F.; Kim, G.-Y.; Song, K.; Choi, S.-Y.; Liu, J.-M.; Chen, L.-Q.; Yang, C.-H. Ferroelastically protected polarization switching pathways to control electrical conductivity in strain-graded ferroelectric nanoplates. Phys. Rev. Mater. 2018, 2, 084412. [Google Scholar] [CrossRef]
- Schoenherr, P.; Shapovalov, K.; Schaab, J.; Yan, Z.; Bourret, E.D.; Hentschel, M.; Stengel, M.; Fiebig, M.; Cano, A.; Meier, D. Observation of Uncompensated Bound Charges at Improper Ferroelectric Domain Walls. Nano Lett. 2019, 19, 1659–1664. [Google Scholar] [CrossRef]
- Hassanpour, E.; Wegmayr, V.; Schaab, J.; Yan, Z.; Bourret, E.; Lottermoser, T.; Fiebig, M.; Meier, D. Robustness of magnetic and electric domains against charge carrier doping in multiferroic hexagonal ErMnO3. New J. Phys. 2016, 18, 043015. [Google Scholar] [CrossRef]
- Salje, E.K.H. Robust templates for domain boundary engineering in ErMnO3. New J. Phys. 2016, 18, 051001. [Google Scholar] [CrossRef]
- Schaab, J.; Cano, A.; Lilienblum, M.; Yan, Z.; Bourret, E.; Ramesh, R.; Fiebig, M.; Meier, D. Optimization of Electronic Domain-Wall Properties by Aliovalent Cation Substitution. Adv. Electron. Mater. 2016, 2, 1500195. [Google Scholar] [CrossRef]
- Holstad, T.S.; Evans, D.M.; Ruff, A.; Småbråten, D.R.; Schaab, J.; Tzschaschel, C.; Yan, Z.; Bourret, E.; Selbach, S.M.; Krohns, S.; et al. Electronic bulk and domain wall properties in B-site doped hexagonal ErMnO3. Phys. Rev. B 2018, 97, 1–8. [Google Scholar] [CrossRef]
- Gaponenko, I.; Tückmantel, P.; Karthik, J.; Martin, L.W.; Paruch, P. Towards reversible control of domain wall conduction in Pb(Zr0.2Ti0.8)O3 thin films. Appl. Phys. Lett. 2015, 106, 1–4. [Google Scholar] [CrossRef]
- Maksymovych, P.; Seidel, J.; Chu, Y.H.; Wu, P.; Baddorf, A.P.; Chen, L.-Q.; Kalinin, S.V.; Ramesh, R. Dynamic Conductivity of Ferroelectric Domain Walls in BiFeO3. Nano Lett. 2011, 11, 1906–1912. [Google Scholar] [CrossRef]
- Mundy, J.A.; Schaab, J.; Kumagai, Y.; Cano, A.; Stengel, M.; Krug, I.P.; Gottlob, D.M.; Doğanay, H.; Holtz, M.E.; Held, R.; et al. Functional electronic inversion layers at ferroelectric domain walls. Nat. Mater. 2017, 16, 622–627. [Google Scholar] [CrossRef] [Green Version]
- Schaab, J.; Skjærvø, S.H.; Krohns, S.; Dai, X.; Holtz, M.E.; Cano, A.; Lilienblum, M.; Yan, Z.; Bourret, E.; Muller, D.A.; et al. Electrical half-wave rectification at ferroelectric domain walls. Nat. Nanotechnol. 2018, 13, 1028–1034. [Google Scholar] [CrossRef]
- Tselev, A.; Yu, P.; Cao, Y.; Dedon, L.R.; Martin, L.W.; Kalinin, S.V.; Maksymovych, P. Microwave a.c. conductivity of domain walls in ferroelectric thin films. Nat. Commun. 2016, 7, 1–9. [Google Scholar] [CrossRef]
- Wu, X.; Du, K.; Zheng, L.; Wu, D.; Cheong, S.-W.; Lai, K. Microwave conductivity of ferroelectric domains and domain walls in a hexagonal rare-earth ferrite. Phys. Rev. B 2018, 98, 081409. [Google Scholar] [CrossRef] [Green Version]
- Prosandeev, S.; Yang, Y.; Paillard, C.; Bellaiche, L. Displacement Current in Domain Walls of Bismuth Ferrite. npj Comput. Mater. 2018, 4, 1–9. [Google Scholar] [CrossRef]
- Berth, G.; Hahn, W.; Wiedemeier, V.; Zrenner, A.; Sanna, S.; Schmidt, W.G. Imaging of the Ferroelectric Domain Structures by Confocal Raman Spectroscopy. Ferroelectrics 2011, 420, 44–48. [Google Scholar] [CrossRef]
- Tarrach, G.; Lagos, L.P.; Hermans, Z.R.; Schlaphof, F.; Loppacher, C.; Eng, L.M. Nanometer spot allocation for Raman spectroscopy on ferroelectrics by polarization and piezoresponse force microscopy. Appl. Phys. Lett. 2001, 79, 3152–3154. [Google Scholar] [CrossRef] [Green Version]
- Pei, S.-C.; Ho, T.-S.; Tsai, C.-C.; Chen, T.-H.; Ho, Y.; Huang, P.-L.; Kung, A.H.; Huang, S.-L. Non-invasive characterization of the domain boundary and structure properties of periodically poled ferroelectrics. Opt. Express 2011, 19, 7153. [Google Scholar] [CrossRef]
- Zhang, Y.; Wen, J.; Zhu, S.N.; Xiao, M. Nonlinear talbot effect. Phys. Rev. Lett. 2010, 104, 1–4. [Google Scholar] [CrossRef]
- Dierolf, V.; Sandmann, C.; Kim, S.; Gopalan, V.; Polgar, K. Ferroelectric domain imaging by defect-luminescence microscopy. J. Appl. Phys. 2003, 93, 2295–2297. [Google Scholar] [CrossRef] [Green Version]
- Otto, T.; Grafström, S.; Chaib, H.; Eng, L.M. Probing the nanoscale electro-optical properties in ferroelectrics. Appl. Phys. Lett. 2004, 84, 1168–1170. [Google Scholar] [CrossRef]
- Kämpfe, T.; Reichenbach, P.; Schröder, M.; Haußmann, A.; Eng, L.M.; Woike, T.; Soergel, E. Optical three-dimensional profiling of charged domain walls in ferroelectrics by Cherenkov second-harmonic generation. Phys. Rev. B 2014, 89, 035314. [Google Scholar] [CrossRef]
- Neacsu, C.C.; van Aken, B.B.; Fiebig, M.; Raschke, M.B. Second-harmonic near-field imaging of ferroelectric domain structure of YMnO3. Phys. Rev. B 2009, 79, 100107. [Google Scholar] [CrossRef]
- Sheng, Y.; Best, A.; Butt, H.-J.; Krolikowski, W.; Arie, A.; Koynov, K. Three-dimensional ferroelectric domain visualization by Čerenkov-type second harmonic generation. Opt. Express 2010, 18, 16539. [Google Scholar] [CrossRef]
- Wehmeier, L.; Kämpfe, T.; Haußmann, A.; Eng, L.M. In Situ 3D Observation of the Domain Wall Dynamics in a Triglycine Sulfate Single Crystal upon Ferroelectric Phase Transition. Phys. Status Solidi Rapid Res. Lett. 2017, 11, 1700267. [Google Scholar] [CrossRef]
- Fiebig, M.; Pavlov, V.V.; Pisarev, R.V. Second-harmonic generation as a tool for studying electronic and magnetic structures of crystals: Review. J. Opt. Soc. Am. B 2005, 22, 96. [Google Scholar] [CrossRef]
- Vats, G.; Bai, Y.; Zhang, D.; Juuti, J.; Seidel, J. Optical Control of Ferroelectric Domains: Nanoscale Insight into Macroscopic Observations. Adv. Opt. Mater. 2019, 7, 1800858. [Google Scholar] [CrossRef]
- Haußmann, A.; Kirsten, L.; Schmidt, S.; Cimalla, P.; Wehmeier, L.; Koch, E.; Eng, L.M. Three-Dimensional, Time-Resolved Profiling of Ferroelectric Domain Wall Dynamics by Spectral-Domain Optical Coherence Tomography. Ann. Phys. 2017, 529, 1700139. [Google Scholar] [CrossRef]
- Kirsten, L.; Haußmann, A.; Schnabel, C.; Schmidt, S.; Cimalla, P.; Eng, L.M.; Koch, E. Advanced analysis of domain walls in Mg doped LiNbO3 crystals with high resolution OCT. Opt. Express 2017, 25, 14871. [Google Scholar] [CrossRef] [PubMed]
- Ayoub, M.; Futterlieb, H.; Imbrock, J.; Denz, C. 3D Imaging of Ferroelectric Kinetics during Electrically Driven Switching. Adv. Mater. 2017, 29, 1603325. [Google Scholar] [CrossRef] [PubMed]
- Kämpfe, T.; Reichenbach, P.; Haußmann, A.; Woike, T.; Soergel, E.; Eng, L.M. Real-time three-dimensional profiling of ferroelectric domain walls. Appl. Phys. Lett. 2015, 107, 152905. [Google Scholar] [CrossRef]
- Warren, W.L.; Dimos, D.; Tuttle, B.A.; Pike, G.E.; Schwartz, R.W.; Clews, P.J.; McIntyre, D.C. Polarization suppression in Pb(Zr,Ti)O3 thin films. J. Appl. Phys. 1995, 77, 6695–6702. [Google Scholar] [CrossRef]
- Wengler, M.C.; Fassbender, B.; Soergel, E.; Buse, K. Impact of ultraviolet light on coercive field, poling dynamics and poling quality of various lithium niobate crystals from different sources. J. Appl. Phys. 2004, 96, 2816–2820. [Google Scholar] [CrossRef]
- Sones, C.L.; Wengler, M.C.; Valdivia, C.E.; Mailis, S.; Eason, R.W.; Buse, K. Light-induced order-of-magnitude decrease in the electric field for domain nucleation in MgO-doped lithium niobate crystals. Appl. Phys. Lett. 2005, 86, 212901. [Google Scholar] [CrossRef] [Green Version]
- Zheng, S.; Kong, Y.; Liu, H.; Chen, S.; Zhang, L.; Liu, S.; Xu, J. Pyroelectric effect in green light-assisted domain reversal of Mg-doped LiNbO3 crystals. Opt. Express 2012, 20, 29131. [Google Scholar] [CrossRef] [PubMed]
- Boes, A.; Steigerwald, H.; Yudistira, D.; Sivan, V.; Wade, S.; Mailis, S.; Soergel, E.; Mitchell, A. Ultraviolet laser-induced poling inhibition produces bulk domains in MgO-doped lithium niobate crystals. Appl. Phys. Lett. 2014, 105, 092904. [Google Scholar] [CrossRef]
- Fujimura, M.; Sohmura, T.; Suhara, T. Fabrication of domain-inverted gratings in MgO: LiNbO3 by applying voltage under ultraviolet irradiation through photomask at room temperature. Electron. Lett. 2003, 39, 719–721. [Google Scholar]
- Muir, A.C.; Sones, C.L.; Mailis, S.; Eason, R.W.; Jungk, T.; Hoffman, A.; Soergel, E. Direct-writing of inverted domains in lithium niobate using a continuous wave ultra violet laser. Opt. Express 2008, 16, 2336–2350. [Google Scholar] [CrossRef] [PubMed]
- Steigerwald, H.; Lilienblum, M.; von Cube, F.; Ying, Y.J.; Eason, R.W.; Mailis, S.; Sturman, B.; Soergel, E.; Buse, K. Origin of UV-induced poling inhibition in lithium niobate crystals. Phys. Rev. B 2010, 82, 214105. [Google Scholar] [CrossRef]
- Ying, C.Y.J.; Muir, A.C.; Valdivia, C.E.; Steigerwald, H.; Sones, C.L.; Eason, R.W.; Soergel, E.; Mailis, S. Light-mediated ferroelectric domain engineering and micro-structuring of lithium niobate crystals. Laser Photonics. Rev. 2012, 6, 526–548. [Google Scholar] [CrossRef]
- Boes, A.; Crasto, T.; Steigerwald, H.; Wade, S.; Frohnhaus, J.; Soergel, E.; Mitchell, A. Direct writing of ferroelectric domains on strontium barium niobate crystals using focused ultraviolet laser light. Appl. Phys. Lett. 2013, 103, 142904. [Google Scholar] [CrossRef]
- Chen, X.; Karpinski, P.; Shvedov, V.; Koynov, K.; Wang, B.; Trull, J.; Cojocaru, C.; Krolikowski, W.; Sheng, Y. Ferroelectric domain engineering by focused infrared femtosecond pulses. Appl. Phys. Lett. 2015, 107, 141102. [Google Scholar] [Green Version]
- Manz, S.; Matsubara, M.; Lottermoser, T.; Büchi, J.; Iyama, A.; Kimura, T.; Meier, D.; Fiebig, M. Reversible optical switching of antiferromagnetism in TbMnO3. Nat. Photonics 2016, 10, 653–656. [Google Scholar] [CrossRef]
- Paillard, C.; Bai, X.; Infante, I.C.; Guennou, M.; Geneste, G.; Alexe, M.; Kreisel, J.; Dkhil, B. Photovoltaics with Ferroelectrics: Current Status and Beyond. Adv. Mater. 2016, 28, 5153–5168. [Google Scholar] [CrossRef]
- Yuan, Y.; Xiao, Z.; Yang, B.; Huang, J. Arising applications of ferroelectric materials in photovoltaic devices. J. Mater. Chem. A 2014, 2, 6027–6041. [Google Scholar] [CrossRef]
- Pandey, R.; Vats, G.; Yun, J.; Bowen, C.R.; Ho-Baillie, A.W.Y.; Seidel, J. Perovskites for Solar and Thermal Energy Harvesting: State of the Art Technologies, Current Scenario and Future Directions. arXiv 2017, arXiv:1705.05529. [Google Scholar]
- Yang, S.Y. Above-bandgap voltages from ferroelectric photovoltaic devices. Nat. Nanotechnol. 2010, 5, 143–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seidel, J.; Fu, D.; Yang, S.-Y.; Alarcón-Lladó, E.; Wu, J.; Ramesh, R.; Ager, J.W. Efficient Photovoltaic Current Generation at Ferroelectric Domain Walls. Phys. Rev. Lett. 2011, 107, 126805. [Google Scholar] [CrossRef] [Green Version]
- Matsuo, H.; Kitanaka, Y.; Inoue, R.; Noguchi, Y.; Miyayama, M.; Kiguchi, T.; Konno, T.J. Bulk and domain-wall effects in ferroelectric photovoltaics. Phys. Rev. B 2016, 94, 214111. [Google Scholar] [CrossRef]
- Inoue, R.; Ishikawa, S.; Imura, R.; Kitanaka, Y.; Oguchi, T.; Noguchi, Y.; Miyayama, M. Giant photovoltaic effect of ferroelectric domain walls in perovskite single crystals. Sci. Rep. 2015, 5, 14741. [Google Scholar] [CrossRef]
- Blouzon, C.; Chauleau, J.-Y.; Mougin, A.; Fusil, S.; Viret, M. Photovoltaic response around a unique 180° ferroelectric domain wall in single-crystalline BiFeO3. Phys. Rev. B 2016, 94, 094107. [Google Scholar] [CrossRef]
- Teh, Y.S.; Bhattacharya, K. Photovoltaic effect in multi-domain ferroelectric perovskite oxides. J. Appl. Phys. 2019, 125, 064103. [Google Scholar] [CrossRef]
- Alexe, M.; Hesse, D. Tip-enhanced photovoltaic effects in bismuth ferrite. Nat. Commun. 2011, 2, 256. [Google Scholar] [CrossRef] [Green Version]
- Alexe, M. Local Mapping of Generation and Recombination Lifetime in BiFeO3 Single Crystals by Scanning Probe Photoinduced Transient Spectroscopy. Nano Lett. 2012, 12, 2193–2198. [Google Scholar] [CrossRef]
- Yang, M.; Bhatnagar, A.; Alexe, M. Electronic Origin and Tailoring of Photovoltaic Effect in BiFeO3 Single Crystals. Adv. Electron. Mater. 2015, 1, 1500139. [Google Scholar] [CrossRef]
- Yang, M.-M.; Bhatnagar, A.; Luo, Z.-D.; Alexe, M. Enhancement of Local Photovoltaic Current at Ferroelectric Domain Walls in BiFeO3. Sci. Rep. 2017, 7, 43070. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, A.; Roy Chaudhuri, A.; Heon Kim, Y.; Hesse, D.; Alexe, M. Role of domain walls in the abnormal photovoltaic effect in BiFeO3. Nat. Commun. 2013, 4, 2835. [Google Scholar] [CrossRef]
- Rubio-Marcos, F.; Del Campo, A.; Marchet, P.; Fernández, J.F. Ferroelectric domain wall motion induced by polarized light. Nat. Commun. 2015, 6, 6594. [Google Scholar] [CrossRef] [PubMed]
- Fiebig, M.; Lottermoser, T.; Meier, D.; Trassin, M. The evolution of multiferroics. Nat. Rev. Mater. 2016, 1, 16046. [Google Scholar] [CrossRef]
- Spaldin, N.A.; Ramesh, R. Advances in magnetoelectric multiferroics. Nat. Mater. 2019, 18, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Geng, Y.; Das, H.; Wysocki, A.L.; Wang, X.; Cheong, S.-W.; Mostovoy, M.; Fennie, C.J.; Wu, W. Direct visualization of magnetoelectric domains. Nat. Mater. 2014, 13, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Fiebig, M.; Lottermoser, T.; Fröhlich, D.; Goltsev, A.V.; Pisarev, R.V. Observation of coupled magnetic and electric domains. Nature 2002, 419, 818–820. [Google Scholar] [CrossRef]
- Goltsev, A.V.; Pisarev, R.V.; Lottermoser, T.; Fiebig, M. Structure and Interaction of Antiferromagnetic Domain Walls in Hexagonal YMnO3. Phys. Rev. Lett. 2003, 90, 177204. [Google Scholar] [CrossRef]
- Tokura, Y.; Seki, S.; Nagaosa, N. Multiferroics of spin origin. Rep. Prog. Phys. 2014, 77, 076501. [Google Scholar] [CrossRef]
- Kimura, T. Spiral Magnets as Magnetoelectrics. Annu. Rev. Mater. Res. 2007, 37, 387–413. [Google Scholar] [CrossRef]
- Matsubara, M.; Manz, S.; Mochizuki, M.; Kubacka, T.; Iyama, A.; Aliouane, N.; Kimura, T.; Johnson, S.L.; Meier, D.; Fiebig, M. Magnetoelectric domain control in multiferroic TbMnO3. Science 2015, 348, 1112–1115. [Google Scholar] [CrossRef] [PubMed]
- Leo, N.; Bergman, A.; Cano, A.; Poudel, N.; Lorenz, B.; Fiebig, M.; Meier, D. Polarization control at spin-driven ferroelectric domain walls. Nat. Commun. 2015, 6, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Schierle, E.; Soltwisch, V.; Schmitz, D.; Feyerherm, R.; Maljuk, A.; Yokaichiya, F.; Argyriou, D.N.; Weschke, E. Cycloidal Order of 4f Moments as a Probe of Chiral Domains in DyMnO3. Phys. Rev. Lett. 2010, 105, 167207. [Google Scholar] [CrossRef] [PubMed]
- Kagawa, F.; Mochizuki, M.; Onose, Y.; Murakawa, H.; Kaneko, Y.; Furukawa, N.; Tokura, Y. Dynamics of Multiferroic Domain Wall in Spin-Cycloidal Ferroelectric DyMnO3. Phys. Rev. Lett. 2009, 102, 057604. [Google Scholar] [CrossRef]
- Tokunaga, Y.; Furukawa, N.; Sakai, H.; Taguchi, Y.; Arima, T.; Tokura, Y. Composite domain walls in a multiferroic perovskite ferrite. Nat. Mater. 2009, 8, 558–562. [Google Scholar] [CrossRef]
- Tokunaga, Y.; Taguchi, Y.; Arima, T.; Tokura, Y. Electric-field-induced generation and reversal of ferromagnetic moment in ferrites. Nat. Phys. 2012, 8, 838–844. [Google Scholar] [CrossRef]
- Geng, Y.; Lee, N.; Choi, Y.J.; Cheong, S.W.; Wu, W. Collective magnetism at multiferroic vortex domain walls. Nano Lett. 2012, 12, 6055–6059. [Google Scholar] [CrossRef]
- Logginov, A.S.; Meshkov, G.A.; Nikolaev, A.V.; Nikolaeva, E.P.; Pyatakov, A.P.; Zvezdin, A.K. Room temperature magnetoelectric control of micromagnetic structure in iron garnet films. Appl. Phys. Lett. 2008, 93, 182510. [Google Scholar] [CrossRef]
- Daraktchiev, M.; Catalan, G.; Scott, J.F. Landau theory of domain wall magnetoelectricity. Phys. Rev. B Condens. Matter Mater. Phys. 2010, 81, 1–12. [Google Scholar] [CrossRef]
- He, Q.; Chu, Y.H.; Heron, J.T.; Yang, S.Y.; Liang, W.I.; Kuo, C.Y.; Lin, H.J.; Yu, P.; Liang, C.W.; Zeches, R.J.; et al. Electrically controllable spontaneous magnetism in nanoscale mixed phase multiferroics. Nat. Commun. 2011, 2, 225. [Google Scholar] [CrossRef]
- Wang, J. Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures. Science 2003, 299, 1719–1722. [Google Scholar] [CrossRef]
- Lee, J.H.; Fina, I.; Marti, X.; Kim, Y.H.; Hesse, D.; Alexe, M. Spintronic Functionality of BiFeO3 Domain Walls. Adv. Mater. 2014, 26, 7078–7082. [Google Scholar] [CrossRef]
- He, Q.; Yeh, C.-H.; Yang, J.-C.; Singh-Bhalla, G.; Liang, C.-W.; Chiu, P.-W.; Catalan, G.; Martin, L.W.; Chu, Y.-H.; Scott, J.F.; et al. Magnetotransport at Domain Walls in BiFeO3. Phys. Rev. Lett. 2012, 108, 067203. [Google Scholar] [CrossRef]
- Domingo, N.; Farokhipoor, S.; Santiso, J.; Noheda, B.; Catalan, G. Domain wall magnetoresistance in BiFeO3 thin films measured by scanning probe microscopy. J. Phys. Condens. Matter 2017, 29, 334003. [Google Scholar] [CrossRef]
- Daumont, C. Multiferroic Perovskites under Epi-Taxial Strain: The Case of TbMnO3 Thin Films. Ph.D Thesis, University of Groningen, Groningen, The Netherlands, 2009. [Google Scholar]
- Pyatakov, A.P. Magnetoelectricity goes local: From bulk multiferroic crystals to ferroelectricity localized on magnetic topological textures. Phys. B Condens. Matter 2018, 542, 59–62. [Google Scholar] [CrossRef]
- Cheong, S.-W.; Mostovoy, M. Multiferroics: A magnetic twist for ferroelectricity. Nat. Mater. 2007, 6, 13–20. [Google Scholar] [CrossRef]
- Arzamastseva, G.V.; Balbashov, A.M.; Lisovskii, F.V.; Mansvetova, E.G.; Temiryazev, A.G.; Temiryazeva, M.P. Properties of epitaxial (210) iron garnet films exhibiting the magnetoelectric effect. J. Exp. Theor. Phys. 2015, 120, 687–701. [Google Scholar] [CrossRef]
- Koronovskyy, V.; Vakyla, Y. Magneto-electric response of iron garnet film micromagnetic structure on combined action of AC and DC electric field. Electron. Mater. Lett. 2015, 11, 1028–1032. [Google Scholar] [CrossRef]
- Veshchunov, I.S.; Mironov, S.V.; Magrini, W.; Stolyarov, V.S.; Rossolenko, A.N.; Skidanov, V.A.; Trebbia, J.-B.; Buzdin, A.I.; Tamarat, P.; Lounis, B. Direct Evidence of Flexomagnetoelectric Effect Revealed by Single-Molecule Spectroscopy. Phys. Rev. Lett. 2015, 115, 027601. [Google Scholar] [CrossRef] [Green Version]
- White, J.S.; Živković, I.; Kruchkov, A.J.; Bartkowiak, M.; Magrez, A.; Rønnow, H.M. Electric-Field-Driven Topological Phase Switching and Skyrmion-Lattice Metastability in Magnetoelectric Cu2OSeO3. Phys. Rev. Appl. 2018, 10, 014021. [Google Scholar] [CrossRef]
- White, J.S.; Levatić, I.; Omrani, A.A.; Egetenmeyer, N.; Prša, K.; Živković, I.; Gavilano, J.L.; Kohlbrecher, J.; Bartkowiak, M.; Berger, H.; et al. Electric field control of the skyrmion lattice in Cu2OSeO3. J. Phys. Condens. Matter 2012, 24, 432201. [Google Scholar] [CrossRef]
- Huang, P.; Cantoni, M.; Kruchkov, A.; Rajeswari, J.; Magrez, A.; Carbone, F.; Rønnow, H.M. In Situ Electric Field Skyrmion Creation in Magnetoelectric Cu2OSeO3. Nano Lett. 2018, 18, 5167–5171. [Google Scholar] [CrossRef]
- Okamura, Y.; Kagawa, F.; Seki, S.; Tokura, Y. Transition to and from the skyrmion lattice phase by electric fields in a magnetoelectric compound. Nat. Commun. 2016, 7, 12669. [Google Scholar] [CrossRef] [Green Version]
- Whyte, J.R.; McQuaid, R.G.P.; Sharma, P.; Canalias, C.; Scott, J.F.; Gruverman, A.; Gregg, J.M. Ferroelectric Domain Wall Injection. Adv. Mater. 2014, 26, 293–298. [Google Scholar] [CrossRef]
- Whyte, J.R.; McQuaid, R.G.P.; Ashcroft, C.M.; Einsle, J.F.; Canalias, C.; Gruverman, A.; Gregg, J.M. Sequential injection of domain walls into ferroelectrics at different bias voltages: Paving the way for “domain wall memristors”. J. Appl. Phys. 2014, 116, 066813. [Google Scholar] [CrossRef]
- McGilly, L.J.; Yudin, P.; Feigl, L.; Tagantsev, A.K.; Setter, N. Controlling domain wall motion in ferroelectric thin films. Nat. Nanotechnol. 2015, 10, 145–150. [Google Scholar] [CrossRef]
- McGilly, L.J.; Feigl, L.; Sluka, T.; Yudin, P.; Tagantsev, A.K.; Setter, N. Velocity Control of 180° Domain Walls in Ferroelectric Thin Films by Electrode Modification. Nano Lett. 2016, 16, 68–73. [Google Scholar] [CrossRef]
- Burns, S.R.; Gregg, J.M.; Nagarajan, V. Nanostructuring Ferroelectrics via Focused Ion Beam Methodologies. Adv. Funct. Mater. 2016, 26, 8367–8381. [Google Scholar] [CrossRef] [Green Version]
- Allwood, D.A. Submicrometer Ferromagnetic NOT Gate and Shift Register. Science 2002, 296, 2003–2006. [Google Scholar] [CrossRef]
- Allwood, D.A. Magnetic Domain-Wall Logic. Science 2005, 309, 1688–1692. [Google Scholar] [CrossRef]
- Hrkac, G.; Dean, J.; Allwood, D.A. Nanowire spintronics for storage class memories and logic. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011, 369, 3214–3228. [Google Scholar] [CrossRef]
- Parkin, S.S.P.; Hayashi, M.; Thomas, L. Magnetic Domain-Wall Racetrack Memory. Science 2008, 320, 190–194. [Google Scholar] [CrossRef]
- Sharma, P.; Sando, D.; Zhang, Q.; Cheng, X.; Prosandeev, S.; Bulanadi, R.; Prokhorenko, S.; Bellaiche, L.; Chen, L.; Nagarajan, V.; et al. Conformational Domain Wall Switch. Adv. Funct. Mater. 2019, 29, 1807523. [Google Scholar] [CrossRef]
- Shimojo, Y.; Konno, A.; Nishimura, J.; Okada, T.; Yamada, Y.; Kitazaki, S.; Furuhashi, H.; Yamazaki, S.; Yahashi, K.; Tomioka, K.; et al. High-density and high-speed 128Mb chain FeRAMTM with SDRAM-Compatible DDR2 Interface. In Proceedings of the 2009 International Symposium on VLSI Technology, Systems, and Applications, Hsinchu, Taiwan, 27–29 April 2009; Volume 33, pp. 150–151. [Google Scholar]
- Kohlstedt, H.; Mustafa, Y.; Gerber, A.; Petraru, A.; Fitsilis, M.; Meyer, R.; Böttger, U.; Waser, R. Current status and challenges of ferroelectric memory devices. Microelectron. Eng. 2005, 80, 296–304. [Google Scholar] [CrossRef]
- Scott, J.F. Ferroelectric Memories; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Jiang, J.; Bai, Z.L.; Chen, Z.H.; He, L.; Zhang, D.W.; Zhang, Q.H.; Shi, J.A.; Park, M.H.; Scott, J.F.; Hwang, C.S.; et al. Temporary formation of highly conducting domain walls for non-destructive read-out of ferroelectric domain-wall resistance switching memories. Nat. Mater. 2018, 17, 49–55. [Google Scholar] [CrossRef]
- Bai, Z.L.; Cheng, X.X.; Chen, D.F.; Zhang, D.W.; Chen, L.-Q.; Scott, J.F.; Hwang, C.S.; Jiang, A.Q. Hierarchical Domain Structure and Extremely Large Wall Current in Epitaxial BiFeO3 Thin Films. Adv. Funct. Mater. 2018, 28, 1801725. [Google Scholar] [CrossRef]
- Velev, J.P.; Duan, C.-G.; Burton, J.D.; Smogunov, A.; Niranjan, M.K.; Tosatti, E.; Jaswal, S.S.; Tsymbal, E.Y. Magnetic Tunnel Junctions with Ferroelectric Barriers: Prediction of Four Resistance States from First Principles. Nano Lett. 2009, 9, 427–432. [Google Scholar] [CrossRef]
- Garcia, V.; Fusil, S.; Bouzehouane, K.; Enouz-Vedrenne, S.; Mathur, N.D.; Barthélémy, A.; Bibes, M. Giant tunnel electroresistance for non-destructive readout of ferroelectric states. Nature 2009, 460, 81–84. [Google Scholar] [CrossRef]
- Garcia, V.; Bibes, M.; Bocher, L.; Valencia, S.; Kronast, F.; Crassous, A.; Moya, X.; Enouz-Vedrenne, S.; Gloter, A.; Imhoff, D.; et al. Ferroelectric Control of Spin Polarization. Science 2010, 327, 1106–1110. [Google Scholar] [CrossRef]
- Li, M.; Tao, L.L.; Velev, J.P.; Tsymbal, E.Y. Resonant tunneling across a ferroelectric domain wall. Phys. Rev. B 2018, 97, 155121. [Google Scholar] [CrossRef] [Green Version]
- DiDomenico, M.; Johnson, D.A.; Pantell, R.H. Ferroelectric Harmonic Generator and the Large-Signal Microwave Characteristics of a Ferroelectric Ceramic. J. Appl. Phys. 1962, 33, 1697–1706. [Google Scholar] [CrossRef]
- Arlt, G.; Böttger, U.; Witte, S. Dielectric dispersion of ferroelectric ceramics and single crystals at microwave frequencies. Ann. Phys. 1994, 506, 578–588. [Google Scholar] [CrossRef]
- York, B. Tunable Filters. In Multifunctional Adaptive Microwave Circuits and Systems; Palmer, W.D., Steer, M.B., Eds.; Scitech Publishing: Edison, NJ, USA, 2009. [Google Scholar]
- Gu, Z.; Pandya, S.; Samanta, A.; Liu, S.; Xiao, G.; Meyers, C.J.G.; Damodaran, A.R.; Barak, H.; Dasgupta, A.; Saremi, S.; et al. Resonant domain-wall-enhanced tunable microwave ferroelectrics. Nature 2018, 560, 622–627. [Google Scholar] [CrossRef] [Green Version]
- Salahuddin, S.; Datta, S. Use of Negative Capacitance to Provide Voltage Amplification for Low Power Nanoscale Devices. Nano Lett. 2008, 8, 405–410. [Google Scholar] [CrossRef]
- Alam, M.A.; Si, M.; Ye, P.D. A critical review of recent progress on negative capacitance field-effect transistors. Appl. Phys. Lett. 2019, 114, 090401. [Google Scholar] [CrossRef] [Green Version]
- Íñiguez, J.; Zubko, P.; Luk’yanchuk, I.; Cano, A. Ferroelectric negative capacitance. Nat. Rev. Mater. 2019, 4, 243–256. [Google Scholar] [CrossRef] [Green Version]
- Gao, W.; Khan, A.; Marti, X.; Nelson, C.; Serrao, C.; Ravichandran, J.; Ramesh, R.; Salahuddin, S. Room-Temperature Negative Capacitance in a Ferroelectric–Dielectric Superlattice Heterostructure. Nano Lett. 2014, 14, 5814–5819. [Google Scholar] [CrossRef]
- Hoffmann, M.; Pešić, M.; Chatterjee, K.; Khan, A.I.; Salahuddin, S.; Slesazeck, S.; Schroeder, U.; Mikolajick, T. Direct Observation of Negative Capacitance in Polycrystalline Ferroelectric HfO2. Adv. Funct. Mater. 2016, 26, 8643–8649. [Google Scholar] [CrossRef]
- Nourbakhsh, A.; Zubair, A.; Joglekar, S.; Dresselhaus, M.; Palacios, T. Subthreshold swing improvement in MoS2 transistors by the negative-capacitance effect in a ferroelectric Al-doped-HfO2/HfO2 gate dielectric stack. Nanoscale 2017, 9, 6122–6127. [Google Scholar] [CrossRef]
- Khan, A.I.; Chatterjee, K.; Wang, B.; Drapcho, S.; You, L.; Serrao, C.; Bakaul, S.R.; Ramesh, R.; Salahuddin, S. Negative capacitance in a ferroelectric capacitor. Nat. Mater. 2015, 14, 182–186. [Google Scholar] [CrossRef]
- Hoffmann, M.; Fengler, F.P.G.; Herzig, M.; Mittmann, T.; Max, B.; Schroeder, U.; Negrea, R.; Lucian, P.; Slesazeck, S.; Mikolajick, T. Unveiling the double-well energy landscape in a ferroelectric layer. Nature 2019, 565, 464–467. [Google Scholar] [CrossRef]
- Zubko, P.; Wojdel, J.C.; Hadjimichael, M.; Fernandez-Pena, S.; Sené, A.; Luk’yanchuk, I.; Triscone, J.M.; Íñiguez, J. Negative capacitance in multidomain ferroelectric superlattices. Nature 2016, 534, 524–528. [Google Scholar] [CrossRef] [Green Version]
- Sluka, T.; Mokry, P.; Setter, N. Static negative capacitance of a ferroelectric nano-domain nucleus. Appl. Phys. Lett. 2017, 111, 152902. [Google Scholar] [CrossRef]
- Jiang, A.Q.; Zhang, Y. Next-generation ferroelectric domain-wall memories: Principle and architecture. NPG Asia Mater. 2019, 11, 9–13. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, P.; Schoenherr, P.; Seidel, J. Functional Ferroic Domain Walls for Nanoelectronics. Materials 2019, 12, 2927. https://doi.org/10.3390/ma12182927
Sharma P, Schoenherr P, Seidel J. Functional Ferroic Domain Walls for Nanoelectronics. Materials. 2019; 12(18):2927. https://doi.org/10.3390/ma12182927
Chicago/Turabian StyleSharma, Pankaj, Peggy Schoenherr, and Jan Seidel. 2019. "Functional Ferroic Domain Walls for Nanoelectronics" Materials 12, no. 18: 2927. https://doi.org/10.3390/ma12182927
APA StyleSharma, P., Schoenherr, P., & Seidel, J. (2019). Functional Ferroic Domain Walls for Nanoelectronics. Materials, 12(18), 2927. https://doi.org/10.3390/ma12182927