The Application of Statins in the Regeneration of Bone Defects. Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Material and Methods
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Sirtori, C.R. The pharmacology of statins. Pharm. Res. 2014, 88, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Edwards, C.J.; Spector, T.D. Statins as modulators of bone formation. Arthritis Res. 2002, 4, 151–153. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.R.; Werlang, C.A.; Kasper, F.K.; Mikos, A.G. Novel applications of statins for bone regeneration. Natl. Sci. Rev. 2015, 2, 85–99. [Google Scholar] [CrossRef]
- Stancu, C.; Sima, A. Statins: Mechanism of action and effects. J. Cell. Mol. Med. 2001, 5, 378–387. [Google Scholar] [CrossRef] [PubMed]
- Garrett, I.; Gutierrez, G.; Mundy, G. Statins and Bone Formation. Curr. Pharm. Des. 2001, 7, 715–736. [Google Scholar] [CrossRef]
- Fernández-García, D.; Alonso, G.; Muñoz-Torres, M. Anabolic therapy of osteoporosis. Med. Clin. (Barc.) 2005, 125, 341–345. [Google Scholar] [CrossRef]
- Brittain, S.B.; Gohil, S.V.; Nair, L.S. Statins as bioactive molecules to support bone regeneration. Curr. Med. Chem. 2014, 21, 2980–2988. [Google Scholar] [CrossRef]
- Yueyi, C.; Xiaoguang, H.; JingYing, W.; Quansheng, S.; Jie, T.; Xin, F.; Yingsheng, X.; Chunli, S. Calvarial defect healing by recruitment of autogenous osteogenic stem cells using locally applied simvastatin. Biomaterials 2013, 34, 9373–9380. [Google Scholar] [CrossRef]
- Calixto, J.C.; de Castro Lima, C.E.V.; Frederico, L.; de Castro, R.P.D.S.; Anbinder, A.L. The influence of local administration of simvastatin in calvarial bone healing in rats. J. Cranio-Maxillofac. Surg. 2011, 39, 215–220. [Google Scholar] [CrossRef]
- Raafat, S.N.; Amin, R.M.; Elmazar, M.M.; Khattab, M.M.; El-Khatib, A.S.; Kattab, M.M. The sole and combined effect of simvastatin and platelet rich fibrin as a filling material in induced bone defect in tibia of albino rats. Bone 2018, 117, 60–69. [Google Scholar] [CrossRef]
- Bleedorn, J.A.; Sullivan, R.; Lu, Y.; Nemke, B.; Kalscheur, V.; Markel, M.D. Percutaneous lovastatin accelerates bone healing but is associated with periosseous soft tissue inflammation in a canine tibial osteotomy model. J. Orthop. Res. 2014, 32, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, L.B.; Bradaschia-Correa, V.; Moreira, M.M.; Marques, N.D.; Arana-Chavez, V.E. Evaluation of bone repair of critical size defects treated with simvastatin-loaded poly(lactic-co-glycolic acid) microspheres in rat calvaria. J. Biomater. Appl. 2015, 29, 965–976. [Google Scholar] [CrossRef] [PubMed]
- Fukui, T.; Ii, M.; Shoji, T.; Matsumoto, T.; Mifune, Y.; Kawakami, Y.; Akimaru, H.; Kawamoto, A.; Kuroda, T.; Saito, T.; et al. Therapeutic effect of local administration of low-dose simvastatin-conjugated gelatin hydrogel for fracture healing. J. Bone Min. Res. 2012, 27, 1118–1131. [Google Scholar] [CrossRef] [PubMed]
- Garrett, I.; Gutierrez, G.; Rossini, G.; Nyman, J.; McCluskey, B.; Flores, A.; Mundy, G. Locally delivered lovastatin nanoparticles enhance fracture healing in rats. J. Orthop. Res. 2007, 25, 1351–1357. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, H.K.; Fahmy, R.H. Localized rosuvastatin via implantable bioerodible sponge and its potential role in augmenting bone healing and regeneration. Drug Deliv. 2016, 23, 3181–3192. [Google Scholar] [CrossRef] [Green Version]
- Mukozawa, A.; Ueki, K.; Marukawa, K.; Okabe, K.; Moroi, A.; Nakagawa, K. Bone healing of critical-sized nasal defects in rabbits by statins in two different carriers. Clin. Oral Implant. Res. 2011, 22, 1327–1335. [Google Scholar] [CrossRef]
- Rushinek, H.; Alterman, M.; Laviv, A.; Weiss, E.I.; Friedman, M.; Casap, N. Topical application of slow-release simvastatin as a bone substitute in bone defects in the rat tibia: A pilot study. Int. J. Oral Maxillofac. Implant. 2014, 29, e241–e246. [Google Scholar] [CrossRef]
- Yoshii, T.; Hafeman, A.E.; Esparza, J.M.; Okawa, A.; Gutierrez, G.; Guelcher, S.A. Local injection of lovastatin in biodegradable polyurethane scaffolds enhances bone regeneration in critical-sized segmental defect in rat femora. J. Tissue Eng Regen Med. 2014, 8, 589–595. [Google Scholar] [CrossRef]
- Seyhan, N.; Keskin, S.; Aktan, M.; Avunduk, M.C.; Sengelen, M.; Savaci, N. Comparison of the Effect of Platelet-Rich Plasma and Simvastatin on Healing of Critical-Size Calvarial Bone Defects. J. Craniofacial Surg. 2016, 27, 1–1370. [Google Scholar] [CrossRef]
- Yan, Q.; Xiao, L.-Q.; Tan, L.; Sun, W.; Wu, T.; Chen, L.-W.; Mei, Y.; Shi, B. Controlled release of simvastatin-loaded thermo-sensitive PLGA-PEG-PLGA hydrogel for bone tissue regeneration:in vitroandin vivocharacteristics. J. Biomed. Mater. Res. Part. A 2015, 103, 3580–3589. [Google Scholar] [CrossRef]
- Türer, A.; Durmuşlar, M.C.; Şener, I.; Misir, A.F.; Önger, M.E. The Effect of Local Rosuvastatin on Mandibular Fracture Healing. J. Craniofacial Surg. 2016, 27, e758–e761. [Google Scholar] [CrossRef] [PubMed]
- Ho, M.-H.; Chiang, C.-P.; Liu, Y.-F.; Kuo, M.Y.-P.; Lin, S.-K.; Lai, J.-Y.; Lee, B.-S. Highly efficient release of lovastatin from poly(lactic-co-glycolic acid) nanoparticles enhances bone repair in rats. J. Orthop. Res. 2011, 29, 1504–1510. [Google Scholar] [CrossRef] [PubMed]
- Kilkenny, C.; Browne, W.J.; Cuthill, I.C.; Emerson, M.; Altman, D.G. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. PLoS Boil. 2010, 8, e1000412. [Google Scholar]
- Hooijmans, C.R.; Rovers, M.M.; De Vries, R.B.; Leenaars, M.; Ritskes-Hoitinga, M.; Langendam, M.W. SYRCLE’s risk of bias tool for animal studies. BMC Med. Res. Methodol. 2014, 14, 43. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.N.; Rau, L.H.; Marodin, A.; Corrêa, M.; Corrêa, L.R.; Aragones, A.; de Souza Magini, R. Ridge Preservation After Maxillary Third Molar Extraction using 30% porosity PLGA/HA/β-TCP scaffolds with and without simvastatin: A pilot randomized controlled clinical trial. Implant Dent. 2017, 26, 832–840. [Google Scholar] [CrossRef] [PubMed]
- Papadimitriou, K.; Karkavelas, G.; Vouros, I.; Kessopoulou, E.; Konstantinidis, A. Effects of local application of simvastatin on bone regeneration in femoral bone defects in rabbit. J. Craniomaxillofac Surg. 2015, 43, 232–237. [Google Scholar] [CrossRef]
- Gouda, A.; Helal, E.; Ali, S.; Bakry, S.; Yassin, S. Maxillary sinus lift using osteoinductive simvastatin combined with β-TCP versus β-TCP – a comparative pilot study to evaluate simvastatin enhanced and accelerated bone formation. Acta Odontol Scand. 2018, 76, 39–47. [Google Scholar] [CrossRef]
- Yaghobee, S.; Ghahroudi, A.A.R.R.; Khorsand, A.; Mahmoudi, S.; Rafiei, S.C. Radiographic comparison of bovine bone substitute alone versus bovine bone substitute and simvastatin for human maxillary sinus augmentation. J. Dent. (Tehran). 2018, 15, 20–29. [Google Scholar]
- Moraschini, V.; Almeida, D.; Calasans-Maia, J.; Calasans-Maia, M.D. The ability of topical and systemic statins to increase osteogenesis around dental implants: A systematic review of histomorphometric outcomes in animal studies. Int. J. Oral Maxillofac. Surg. 2018, 47, 1070–1078. [Google Scholar] [CrossRef]
- Akram, Z.; Vohra, F.; Javed, F. Efficacy of statins delivery as an adjunct to scaling and root planning in the treatment of chronic periodontitis: A meta-analysis. J. Investig. Clin. Dent. 2018, 9, 12304. [Google Scholar] [CrossRef] [PubMed]
- Muniz, F.W.M.G.; Taminski, K.; Cavagni, J.; Celeste, R.K.; Weidlich, P.; Rösing, C.K. The effect of statins on periodontal treatment—A systematic review with meta-analyses and meta-regression. Clin. Oral Investig. 2018, 22, 671–687. [Google Scholar] [CrossRef] [PubMed]
Animal Species | N/Randomization | Filling Material | Follow-Up | Values Registered | Significant Results | |
---|---|---|---|---|---|---|
Yueyi et al. 2013 [8] | Rabbit and rat | 16 and 8 NE | 200 mg polylatcic acid (1a)// 200 mg polylatcic acid + 50 mg simvastatin (2a) (rabbit) // 20 mg polylactic acid (1b)// 20 mg polylactic acid + 5 mg simvastatin (2b) (rat) | 42 and 72 days | New bone formation, BMP-2, HIF-1α, GFP-labeled BMSCs, EPCs and BMSCs | Bone formation, EPCs periphereal blood, BMSCs periphereal blood, GFP-labeled BMSCs, HIF-1α, BMP-2 |
Calixto et al. 2011 [9] | Rat | 64 NE | No filling material (1)// collagen sponges soaked in water (2)// collagen sponges + 2.2 mg/50 μL simvastatin (3)// collagen sponges + 0.5 mg/50 μL simvastatin (4) | 30 and 60 days | BMD, histomorphometry | Group 3 radiographic density at 30 days |
Raafat et al. 2018 [10] | Rat | 48 NE | No filling material (1)// 6 mg PRF(2)// 1mg simvastatina + gelatin (3)// 1mg simvastatin + PRF 1:6 (4) | 30 and 60 days | New bone formation, histomorphometry, BMP-2, VEGF; OPG, RANKL, ALP, OSC and BMD | Bone formation in groups 2, 3 and 4; bone maduration in group 4 at 60 days; BMP-2 and VEGF in groups 2, 3 and 4; OPG, OSC and ALP in groups 3 and 4; RANKL in groups 3 and 4; BMD in group 4; complete bone healing at 60 days in group 4 |
Bleedorn et al. 2013 [11] | Dog | 18 Randomized | 25% polyethylene glycol 400 + 75% hyaluronic acid (1)// 150 mg lovastatin + polyethylene glycol 400 + 75% hyaluronic acid (2) | 70 days (77 in 2 cases) | Radiographic bone union, time bone healing, histomorphometry | Bone healing, soft tissue necrosis and inflammation |
Ferreira et al. 2014 [12] | Rat | 66 NE | No filling material (1)// no filling material + poly(lactic-co-glycolic acid) membrane (2)// 5 mg simvastatin + poly(lactic-co-glycolic acid) microspheres + poly(lactic-co-glycolic acid) membrane (3)// poly(lactic-co-glycolic acid) microspheres + poly(lactic-co-glycolic acid) membrane (4) | 30 and 60 days | New bone formation, OPN, BSP, OSAD, histomorphometry | Bone healing, bone matrix organization and maturity |
Fukui et al. 2012 [13] | Rat | 60 NE | 250 mg simvastatin conjugated with gelatin hydrogel (1)// gelatin hydrogel alone (2) | 14, 28 and 56 days | Bone healing, histomorphometry, RT-PCR analysis, capillary density and OB density, blood perfusion, biomechanical analysis (stress, extrinsic stiffness, failure energy, RR of fractured femur to nonfractured, EPCs | Bone healing, angiogenesis, osteogenesis, bone density |
Garret et al. 2007 [14] | Rat | 72 NE | 50 μL PBS (1)// 50 μL biodegradable polymer nanoparticle (2)// 50 μL biodegradable polymer nanoparticle delivering 0.2 μg/day lovastatin (3)// 50 μL biodegradable polymer nanoparticle delivering 1μg/day lovastatin (4)// 50 μL biodegradable polymer nanoparticle delivering 1.5 μg/day lovastatin(5)// 50 μL biodegradable polymer nanoparticle delivering 7.5 μg/day lovastatin (6) | 14 and 28 days | Bone healing, biomechanical measurements, lovastatin plasma levels | Bone healing, cortical fracture gap at 4 weeks, maximum force to fracture and work-to-fracture (groups 4 and 5), lovastatin undetectable at 28 days |
Ibrahim and Fahmy 2016 [15] | Rat | 16 NE | 3:1 chitosan to Carbapol® + 2% Imwitor® + 19.88-24.38 mg rosuvastatin sponges (1)// no filling material (2) | 30 days | Bone healing | Bone healing |
Mukozawa et al. 2010 [16] | Rabbit | 20 NE | 2.5 mg/mL simvastatin in 0.2 ml water + hydrogel (1)// 2.5 mg/mL simvastatin in 0.2 ml water + atelocollagen sponge (2)// hydrogel (3)// atelocollagen sponge (4)// no filling material (5) | 7, 14, 28, 56 and 84 days | New bone area ratio, BMP-2, histomorphometry | Number cells stained positive to BMP-2 at 14 and 28 days (groups 1 and 2), new bone area ratio at 14, 28, 56 and 84 days (groups 1 and 2) |
Rushinek et al. 2014 [17] | Rat | 16 NE | Slow-release degradable hydroxypropyl methylcellulose (70% simvastatin and 30% Methocel K100M) (1)// Slow-release degradable hydroxypropyl methylcellulose (100% Methocel K100M) (2) | 14, 28, 42 and 56 days | MBV/TV, Ob.S/BS, OS/BS, OV/BV, Os.Th, MS/BS, MAR, BFR/BS, double-labeled calcein surface | Double-labeled surface, OV/BV, Os.Th |
Yoshii et al. 2012 [18] | Rat | 18 and 18 NE | Polyethylene glycol in PBS (200 μL) (1a)// Polyethylene glycol in PBS (200 μL) + 25 μg LV-MPs (2a)// Polyethylene glycol in PBS (200 μL) + 100 μg LV-MPs (3a)// Polyethylene glycol in PBS (200 μL) at 14, 28 and 42 days (1b)// Polyethylene glycol in PBS (200 μL) + 100 μg LV-MPs at 14, 28 and 42 days (2b) | 28 days/ 14, 28, 42 and 56 days | Mineralized bone formation, bone volume, density in the defects, newly formed bone matrix | Volume and density of newly formed bone (3a)// Volume and density of newly formed bone at 56 days (2b) |
Seyhan et al. 2016 [19] | Rat | 30 Randomized | PBS (1)// 0.5 mL PRP (2)// 0.1 mL simvastatin (3) | 56 and 112 days | New bone forming area, fibroblasts, osteoblasts, osteoclasts, vessel diameter | New bone forming area, fibroblasts, osteoblasts, vessel diameter and osteoclasts (3) |
Yan et al. 2015 [20] | Rat | 24 Randomized | PLGA-PEG-PLGA (1)// SIM/PLGA-PEG-PLGA(2)// no filling material(3) | 28 days | New bone formation ratio, histomorphometry | New bone formation ratio (2) |
Türer et al. 2016 [21] | Rat | 32 NE | Collagen sponge (1,2) // Collagen sponge with saline solution containing 1 mg rosuvastatin (3,4) | 14 and 28 days | New bone volume | New bone volume at 14 days (3,4) |
Ho et al. 2011 [22] | Rat | 30 Randomized | 1 mg PLGA nanoparticles containing lovastatin (1a) // gelfoam (1b) // 3 mg nanoparticles containing lovastatin (2a) // gelfoam (2b) // 1 mg nanoparticles containing lovastatin (3a) // 1 mg nanoparticles without lovastatin (3b) // 3 mg nanoparticles containing lovastatin (4a) // 3 mg nanoparticles without lovastatin (4b) | 21, 42, 63 and 84 days | Volume changes of the defect, histomorphometry | Remaining bony defect in volumen (1a) at 42, 63 and 84 days |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roca-Millan, E.; González-Navarro, B.; Izquierdo-Gómez, K.; Marí-Roig, A.; Jané-Salas, E.; López-López, J.; Velasco-Ortega, E. The Application of Statins in the Regeneration of Bone Defects. Systematic Review and Meta-Analysis. Materials 2019, 12, 2992. https://doi.org/10.3390/ma12182992
Roca-Millan E, González-Navarro B, Izquierdo-Gómez K, Marí-Roig A, Jané-Salas E, López-López J, Velasco-Ortega E. The Application of Statins in the Regeneration of Bone Defects. Systematic Review and Meta-Analysis. Materials. 2019; 12(18):2992. https://doi.org/10.3390/ma12182992
Chicago/Turabian StyleRoca-Millan, Elisabet, Beatriz González-Navarro, Keila Izquierdo-Gómez, Antonio Marí-Roig, Enric Jané-Salas, José López-López, and Eugenio Velasco-Ortega. 2019. "The Application of Statins in the Regeneration of Bone Defects. Systematic Review and Meta-Analysis" Materials 12, no. 18: 2992. https://doi.org/10.3390/ma12182992
APA StyleRoca-Millan, E., González-Navarro, B., Izquierdo-Gómez, K., Marí-Roig, A., Jané-Salas, E., López-López, J., & Velasco-Ortega, E. (2019). The Application of Statins in the Regeneration of Bone Defects. Systematic Review and Meta-Analysis. Materials, 12(18), 2992. https://doi.org/10.3390/ma12182992