Influence of Preheating on the Microstructure Evolution of Laser Re-Melting Thermal Barrier Coatings/Ni-Based Single Crystal Superalloy Multilayer System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. LSR Experiments
2.3. Characterization
3. Results
4. Discussion
4.1. Segmented Crack Behavior
4.2. Recrystallization Behavior
5. Conclusions
- Although they have the same laser energy, a continuous re-melted layer formed in the PT-A sample while there was no sign of melting in the NPT-B sample. It can conclude that preheating can lower the laser energy threshold that is required for continuously re-melting the coating.
- Both lowering laser energy and increasing the preheating temperature can result in a decrease of thermal mismatch strain between the re-melted layer and residual as-sprayed layer, resulting in a relatively low-level residual stress in the re-melted layer. The PT-A sample has the less severe segmented cracks compared to the NPT-A and PT-B sample in terms of crack dimension and crack density.
- Surface recrystallization occurs at both NPT-A and PT-B samples, while only certain distorted γ′ phases and some coarse precipitated γ′ phases were found nearby the interface between the BC and SX matrix for the PT-A sample. The remarkably reduced thermal accumulation and stain stored energy close to the interface play a crucial role in developing the microstructure with no evident surface recrystallization.
Author Contributions
Funding
Conflicts of Interest
References
- Padture, N.P.; Gell, M.; Jordan, E.H. Thermal barrier coatings for gas-turbine engine applications. Science 2002, 296, 280–284. [Google Scholar] [CrossRef] [PubMed]
- Schulz, U.; Leyensa, C.; Fritscher, K. Some recent trends in research and technology of advanced thermal barrier coatings. Aerosp. Sci. Technol. 2003, 7, 73–80. [Google Scholar] [CrossRef]
- Zhang, X.F.; Zhou, K.S.; Liu, M.; Deng, C.M.; Deng, C.G.; Mao, J.Z.; Deng, Q. Mechanisms governing the thermal shock and tensile fracture of PS-PVD 7YSZ TBC. Ceram. Int. 2017, 44, 3973–3980. [Google Scholar] [CrossRef]
- Zhang, D. 1-Thermal barrier coatings prepared by electron beam physical vapor deposition (EB–PVD). In Thermal Barrier Coating; Woodhead Publishing Series in Metals and Surface Engineering; Woodhead Publishing: Cambridge, UK, 2011; pp. 3–24. [Google Scholar]
- Georgiopoulos, I.; Vourdasb, N.; Mirzac, S.; Andreoulia, C.; Stathopoulosb, V. LaAlO3 as overlayer in conventional thermal barrier coatings. Procedia Struct. Integr. 2018, 10, 280. [Google Scholar] [CrossRef]
- Stathopoulos, V.; Sadykov, V.; Pavlova, S.; Bespalko, Y.; Fedorova, Y.; Bobrova, L.; Salanov, A.; Ishchenko, A.; Stoyanovsky, V.; Larina, T.; et al. Design of functionally graded multilayer thermal barrier coatings for gas turbine application. Surf. Coat. Technol. 2016, 295, 20–28. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Sayre, G. Commercial thermal barrier coatings with a double-layer bondcoat on turbine vanes and the process repeatability. Surf. Coat. Technol. 2009, 203, 2186–2192. [Google Scholar] [CrossRef]
- Ahmadi-Pidani, R.; Shoja-Razavi, R.; Mozafarinia, R.; Jamali, H. Evaluation of hot corrosion behavior of plasma sprayed ceria and yttria stabilized zirconia thermal barrier coatings in the presence of Na2SO4 + V2O5 molten salt. Ceram. Int. 2012, 38, 6613–6620. [Google Scholar] [CrossRef]
- Jasim, K.M.; Rawlings, R.D.; West, D.R.F. Characterization of plasma-sprayed layers of fully yttria-stabilized zirconia modified by laser sealing. Surf. Coat. Technol. 1992, 53, 75–86. [Google Scholar] [CrossRef]
- Zhou, Y.C.; Hashida, T. Thermal fatigue failure induced by delamination in thermal barrier coating. Int. J. Fatigue 2002, 24, 407–417. [Google Scholar] [CrossRef]
- Ahmadi-Pidani, R.; Shoja-Razavi, R.; Mozafarinia, R.; Jamali, H. Improving the thermal shock resistance of plasma sprayed CYSZ thermal barrier coatings by laser surface modification. Opt. Lasers Eng. 2012, 50, 780–786. [Google Scholar] [CrossRef]
- Zhang, P.; Li, F.; Zhang, X.; Zhang, Z.; Zhou, F.; Ren, L.; Liu, M. Thermal shock resistance of thermal barrier coatings with different surface shapes modified by laser remelting. J. Therm. Spray Tech. 2019, 28, 417–432. [Google Scholar] [CrossRef]
- Smurov, I.; Uglov, A.; Krivonogov, Y.; Sturlese, S.; Bartuli, C. Pulsed laser treatment of plasma-sprayed thermal barrier coatings: Effect of pulse duration and energy input. J. Mater. Sci. 1992, 27, 4523–4530. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, X.; Li, F.; Zhang, Z.; Li, H.; Wang, Y.; Ren, L.; Liu, M. Effects of selective laser modification and Al deposition on the hot corrosion resistance of ceria and yttria-stabilized zirconia thermal barrier coatings. Coatings 2019, 9, 353. [Google Scholar] [CrossRef]
- Ahmadi-Pidani, R.; Shoja-Razavi, R.; Mozafarinia, R.; Jamali, H. Laser surface modification of plasma sprayed CYSZ thermal barrier coatings. Ceram. Int. 2013, 39, 2473–2480. [Google Scholar] [CrossRef]
- Ghasemi, R.; Shoja-Razavi, R.; Mozafarinia, R.; Jamali, H. Laser glazing of plasma-sprayed nanostructured yttria stabilized zirconia thermal barrier coatings. Ceram. Int. 2013, 39, 9483–9490. [Google Scholar] [CrossRef]
- Zhu, C.; Li, P.; Javed, A.; Liang, G.Y.; Xiao, P. An investigation on the microstructure and oxidation behavior of laser remelted air plasma sprayed thermal barrier coatings. Surf. Coat. Technol. 2012, 206, 3739–3746. [Google Scholar] [CrossRef]
- Antou, G.; Montavon, G.; Hlawka, F.; Cornet, A.; Coddet, C.; Frédérique, M. Modification of ceramic thermal spray deposit microstructures implementing in situ laser remelting. Surf. Coat. Technol. 2003, 172, 279–290. [Google Scholar] [CrossRef]
- Morks, M.F.; Berndt, C.C.; Durandet, Y.; Brandt, M.; Wang, J. Microscopic observation of laser glazed yttria-stabilized zirconia coatings. Appl. Surf. Sci. 2010, 256, 6213–6218. [Google Scholar] [CrossRef]
- Fan, Z.; Wang, K.; Dong, X.; Duan, W.; Mei, X.; Wang, W.; Cui, J.; Lv, J. Influence of columnar grain microstructure on thermal shock resistance of laser re-melted ZrO2-7wt.% Y2O3 coatings and their failure mechanism. Surf. Coat. Technol. 2015, 277, 188–196. [Google Scholar] [CrossRef]
- Tsai, P.-C.; Hsu, C.-S. High Temperature Corrosion Resistance and Microstructural Evaluation of Laser-Glazed Plasma-Sprayed Zirconia/MCrAlY Thermal Barrier Coatings. Surf. Coat. Technol. 2004, 183, 29–34. [Google Scholar] [CrossRef]
- Ghasemi, R.; Shoja-Razavi, R.; Mozafarinia, R.; Jamali, H.; Hajizadeh-Oghaz, M.; Ahmadi-Pidani, R. The influence of laser treatment on hot corrosion behavior of plasma-sprayed nanostructured yttria stabilized zirconia thermal barrier coatings. J. Eur. Ceram. Soc. 2014, 34, 2013–2021. [Google Scholar] [CrossRef]
- Ahmadi-Pidani, R.; Shoja-Razavi, R.; Mozafarinia, R.; Jamali, H. Improving the hot corrosion resistance of plasma sprayed ceria-yttria stabilized zirconia thermal barrier coatings by laser surface treatment. Mater. Des. 2014, 57, 336–341. [Google Scholar] [CrossRef]
- Tsai, H.L.; Tsai, P.C.; Tu, D.C. Characterization of laser glazed plasma sprayed yttria stabilized zirconia coatings. Mater. Sci. Eng. 1993, 161, 145–155. [Google Scholar] [CrossRef]
- Sivakumar, R.; Mordike, B.L. Laser melting of plasma sprayed ceramic. Surf. Eng. 1988, 4, 127–140. [Google Scholar] [CrossRef]
- Ghasemi, R.; Shoja-Razavi, R.; Mozafarinia, R.; Jamali, H. The influence of laser treatment on thermal shock resistance of plasma-sprayed nanostructured yttria stabilized zirconia thermal barrier coatings. Ceram. Int. 2014, 40, 347–355. [Google Scholar] [CrossRef]
- Chen, H.; Hao, Y.; Wang, H.; Tang, W. Analysis of the microstructure and thermal shock resistance of laser glazed nanostructured zirconia TBCs. J. Therm. Spray Technol. 2010, 19, 558–565. [Google Scholar] [CrossRef]
- Tsai, H.L.; Tsai, P.C. Performance of laser-glazed plasma-sprayed (ZrO2-12wt.%Y2O3)/(Ni-22wt.%Cr-10wt.%Al-1wt.%Y) thermal barrier coatings in cyclic oxidation tests. Surf. Coat. Technol. 1995, 71, 53. [Google Scholar] [CrossRef]
- Das, B.; Nath, A.K.; Bandyopadhyay, P.P. Online monitoring of laser remelting of plasma sprayed coatings to study the effect of cooling rate on residual stress and mechanical properties. Ceram. Int. 2018, 44, 7524–7534. [Google Scholar] [CrossRef]
- Batista, C.; Portinha, A.; Ribeiro, R.M.; Teixeira, V.; Costa, M.F.; Oliveira, C.R. Morphological and microstructural characterization of laser-glazed plasma-sprayed thermal barrier coatings. Surf. Coat. Technol. 2006, 200, 2929–2937. [Google Scholar] [CrossRef] [Green Version]
- Kadhim, M.J.; Al-Rubaiey, S.I.; Hammood, A.S. The influence of laser specific energy on laser sealing of plasma sprayed yttria partially stabilized zirconia coating. Opt. Laser Eng. 2013, 51, 159–166. [Google Scholar] [CrossRef]
- Fan, Z.; Dong, X.; Wang, K.; Wang, R.; Duan, W.; Wang, W.; Mei, X.; Cui, J.; Zhang, S.; Xu, C. The role of the surface morphology and segmented cracks on the damage forms of laser re-melted thermal barrier coatings in presence of a molten salt (Na2SO4 + V2O5). Corros. Sci. 2017, 115, 56–67. [Google Scholar] [CrossRef]
- Chwa, S.O.; Ohmori, A. Thermal diffusivity and erosion resistance of ZrO2–8 wt.% Y2O3 coatings prepared by a laser hybrid spraying technique. Thin Solid Film. 2002, 415, 160–166. [Google Scholar] [CrossRef]
- Li, R.; Li, Z.; Huang, J.; Zhu, Y. Dilution effect on the formation of amorphous phase in the laser cladded Ni–Fe–B–Si–Nb coatings after laser remelting process. Appl. Surf. Sci. 2012, 258, 7956–7961. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, D. Influence of recrystallization on high-temperature stress rupture property and fracture behavior of single crystal superalloy. Mat. Sci. Eng. A 2012, 551, 149–153. [Google Scholar] [CrossRef]
- Chao, L.C.; Xu, T.; Wang, F.; Xiong, J.C.; Zhu, J. Microstructural evolution on the initiation of sub-solvus recrystallization of a grit-blasted single-crystal superalloy. Mater. Lett. 2015, 148, 159–162. [Google Scholar]
- Xie, G.; Lou, L.H. Influence of the characteristic of recrystallization grain boundary on the formation of creep cracks in a directionally solidified Ni-base superalloy. Mat. Sci. Eng. A Struct. 2012, 532, 579. [Google Scholar] [CrossRef]
- Pollock, T.; Tin, S. Nickel-based superalloys for advanced turbine engines: Chemistry, microstructure and properties. J. Propuls. Power 2006, 22, 361–371. [Google Scholar] [CrossRef]
- Rettberg, L.H.; Pollock, T.M. Localized recrystallization during creep in nickel-based superalloys GTD444 and René N5. Acta Mater. 2014, 73, 287. [Google Scholar] [CrossRef]
- Li, Z.; Xiong, J.; Xu, Q.; Li, J.; Liu, B. Deformation and recrystallization of single crystal nickel-based superalloys during investment casting. J. Mater Process. Technol. 2015, 217, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Kromera, R.; Cormierb, J.; Costila, S.; Courapiedc, D.; Berthec, L.; Peyrec, P. High temperature durability of a bond-coatless plasma-sprayed thermal barrier coating system with laser textured Ni-based single crystal substrate. Surf. Coat. Technol. 2018, 337, 168–176. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Daruta, G.; Luo, X.; Poirier, T.; Stella, J.; Liao, H.; Planche, M. Influence of preheating processes on the microstructure of laser glazed YSZ coatings. Ceram. Int. 2017, 43, 4606–4611. [Google Scholar] [CrossRef]
- Das, B.; Gopinath, M.; Nath, A.K.; Bandyopadhyay, P.P. Effect of cooling rate on residual stress and mechanical properties of laser remelted ceramic coating. J. Eur. Ceram. Soc. 2018, 38, 3932–3944. [Google Scholar] [CrossRef]
- Farahmand, P.; Kovacevic, R. Laser cladding assisted with an induction heater (LCAIH) of Ni-60%WC coating. J. Mater. Process. Technol. 2015, 222, 244–258. [Google Scholar] [CrossRef]
- Wang, J.T.; Weng, C.I.; Chang, J.G.; Hwang, C.C. The influence of temperature and surface conditions on surface absorptivity in laser surface treatment. J. Appl. Phys. 2000, 87, 3245–3253. [Google Scholar] [CrossRef] [Green Version]
- Jamali, H.; Mozafarinia, R.; Razavi, R.S.; Ahmadi-Pidani, R.; Loghman-Estarki, M.R. Fabrication and evaluation of plasma-sprayed nanostructured and conventional YSZ thermal barrier coatings. Curr. Nanosci. 2012, 8, 402–409. [Google Scholar] [CrossRef]
- Acharya, M.V.; Fuchs, G.E. The effect of long-term thermal exposures on the microstructure and properties of CMSX-10 single crystal Ni-base superalloys. Mater. Sci. Eng. A 2004, 381, 143. [Google Scholar] [CrossRef]
- Li, Z.; Xu, Q.; Liu, B. Experimental investigation on recrystallization mechanism of a Ni-base single crystal superalloy. J. Alloy. Compd. 2016, 672, 457–469. [Google Scholar] [CrossRef]
- Kearsey, R.M.; Hegde, S.R.; Beddoes, J.C. Design solutionizing heat treatments for an experimental single crystal superalloy. In Proceedings of the 11th International Symposium on Superalloys, Champion, PA, USA, 14–18 September 2008; pp. 301–310. [Google Scholar]
- Hedge, S.R.; Kearsey, R.M.; Beddoes, J.C. Designing homogenization-solution heat treatments for single crystal superalloys. Mater. Sci. Eng. A 2010, 527, 5528–5538. [Google Scholar]
- Su, X.; Xu, Q.; Wang, R.; Xu, Z.; Liu, S.; Liu, B. Microstructural evolution and compositional homogenization of a low re-bearing Ni-based single crystal superalloy during through progression of heat treatment. Mater. Des. 2018, 141, 296–322. [Google Scholar] [CrossRef]
- Thompson, J.A.; Clyne, T.W. The effect of heat treatment on the stiffness of zirconia top coats in plasma-sprayed TBCs. Acta Mater. 2001, 49, 1565–1575. [Google Scholar] [CrossRef]
- Nie, G.L.; Bao, Y.W.; Wan, D.T.; Tian, Y. Evaluation high temperature elastic modulus of ceramic coatings by relative method. J. Adv. Ceram. 2005, 6, 288–303. [Google Scholar] [CrossRef]
- Guo, S.; Kagawa, Y. Young’s moduli of zirconia top-coat and thermally grown oxide in a plasma-sprayed thermal barrier coating system. Scr. Mater. 2004, 50, 1401–1406. [Google Scholar] [CrossRef]
- Tan, Y.; Shyam, A.; Choi, W.B.; Lara-Curzio, E.; Sampath, S. Anisotropic elastic properties of thermal spray coatings determined via resonant ultrasound spectroscopy. Acta Mater. 2010, 58, 5305–5315. [Google Scholar] [CrossRef]
- Rong, L.G.; Rong, L.G.; Jun, Y.G.; Feng, C.X.; Xin, L.C.; Jiu, L.C. Strain/sintering co-induced multiscale structural changes in plasma-sprayed thermal barrier coatings. Ceram. Int. 2018, 44, 14408–14416. [Google Scholar]
- Anderson, P.S.; Wang, X.; Xiao, P. Effect of isothermal heat treatment on plasma sprayed yttria-stabilized zirconia studied by impedance spectroscopy. J. Am. Ceram. Soc. 2005, 88, 324–330. [Google Scholar] [CrossRef]
- Erk, K.A.; Deschaseaux, C.; Trice, R.W. Grain-boundary grooving of plasma-sprayed yttria-stabilized zirconia thermal barrier coatings. J. Am. Ceram. Soc. 2006, 89, 1673–1678. [Google Scholar] [CrossRef]
- Jo, C.Y.; Cho, H.Y.; Kim, H.M. Effect of recrystallisation on microstructural evolution and mechanical properties of single crystal nickel based superalloy CMSX-2 Part 2-Creep behaviour of surface recrystallised single crystal. Mater. Sci. Technol. 2003, 19, 1671. [Google Scholar] [CrossRef]
- Qiu, Y.Y. Retarded coarsening phenomenon of γ′ precipitates in Ni-based alloy. Acta Mater. 1996, 44, 4969–4980. [Google Scholar] [CrossRef]
- Banerjee, D.; Banerjee, R.; Wang, Y. Formation of split patterns of γ′ precipitates in Ni-Al via particle aggregation. Scr. Mater. 1999, 41, 1023–1030. [Google Scholar] [CrossRef]
Label | Preheating Temperature (°C) | Pulse Energy Density (J/cm2) | PULSE Width (ms) | Spot Diameter (mm) | Laser Frequency (Hz) | Laser Scanning (mm s−1) |
---|---|---|---|---|---|---|
NPT-A | Room Temperature | 86 | 1 | 4 | 40 | 10 |
NPT-B | Room Temperature | 56.6 | ||||
PT-A | 800 | 56.6 | ||||
PT-B | 800 | 86 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, Z.; Duan, W.; Zhang, X.; Mei, X.; Wang, W.; Cui, J. Influence of Preheating on the Microstructure Evolution of Laser Re-Melting Thermal Barrier Coatings/Ni-Based Single Crystal Superalloy Multilayer System. Materials 2019, 12, 3088. https://doi.org/10.3390/ma12193088
Fan Z, Duan W, Zhang X, Mei X, Wang W, Cui J. Influence of Preheating on the Microstructure Evolution of Laser Re-Melting Thermal Barrier Coatings/Ni-Based Single Crystal Superalloy Multilayer System. Materials. 2019; 12(19):3088. https://doi.org/10.3390/ma12193088
Chicago/Turabian StyleFan, Zhengjie, Wenqiang Duan, Xiaofeng Zhang, Xuesong Mei, Wenjun Wang, and Jianlei Cui. 2019. "Influence of Preheating on the Microstructure Evolution of Laser Re-Melting Thermal Barrier Coatings/Ni-Based Single Crystal Superalloy Multilayer System" Materials 12, no. 19: 3088. https://doi.org/10.3390/ma12193088
APA StyleFan, Z., Duan, W., Zhang, X., Mei, X., Wang, W., & Cui, J. (2019). Influence of Preheating on the Microstructure Evolution of Laser Re-Melting Thermal Barrier Coatings/Ni-Based Single Crystal Superalloy Multilayer System. Materials, 12(19), 3088. https://doi.org/10.3390/ma12193088