Synergistic Effect on the Thermomechanical and Electrical Properties of Epoxy Composites with the Enhancement of Carbon Nanotubes and Graphene Nano Platelets
Abstract
:1. Introduction
2. Experimental Method
2.1. Materials and Specimen Preparation
2.2. Experiments
3. Results and Discussion
4. Conclusions
- (1)
- The results of morphological study show that the uniform dispersion of employed nano-fillers in the epoxy matrix can be obtained by applying the SDS treatment. The special hydrophobic and hydrophilic ends of SDS can avoid the agglomeration of carbon fillers and improve the dispersion effectively. Moreover, the uniform dispersion of nano-fillers in the specimen preparation ensures the repeatability of tests.
- (2)
- A strong synergistic effect of the hybrid carbon nano-fillers was found for the studied nanocomposites to improve the storage moduli and increase the glass transition temperatures.
- (3)
- The high aspect ratio of GNPs and the additional linkage provided by the few MWCNTs contribute to the significant synergistic effect on the thermomechanical properties of the composites with the MWCNT:GNP ratio of 1:9.
- (4)
- Comparing the studied composites with other filler ratios, the composites with the MWCNT:GNP ratio of 1:9 display a more intensive synergistic effect of the hybrid nano-fillers for the enhancement of electrical properties.
- (5)
- The large contact areas between the GNPs and the bridging effect provided by the MWCNTs is the main synergistic mechanism of the hybrid nano-fillers on the electrical properties of the studied composites with the MWCNT:GNP ratio of 1:9.
- (6)
- Although the addition of carbon nano-fillers can increase the pyrolysis temperatures of the studied composites, the synergistic effect of the hybrid fillers on the thermal stability of epoxy composites is not evident.
Author Contributions
Funding
Conflicts of Interest
References
- Szeluga, U.; Kumanek, B.; Trzebicka, B. Synergy in hybrid polymer/nanocarbon composites—A review. Compos. Part A Appl. Sci. Manuf. 2015, 73, 204–231. [Google Scholar] [CrossRef]
- Deng, H.; Skipa, T.; Bilotti, E.; Zhang, R.; Lellinger, D.; Mezzo, L.; Fu, Q.; Alig, I.; Peijs, T. Preparation of high-performance conductive polymer fibers through morphological control of networks formed by nanofillers. Adv. Funct. Mater. 2010, 20, 1424–1432. [Google Scholar] [CrossRef]
- Kim, T.A.; Kim, H.S.; Lee, S.S.; Park, M. Single-walled carbon nanotube/silicone rubber composites for compliant electrodes. Carbon 2012, 50, 444–449. [Google Scholar] [CrossRef]
- Kim, H.; Abdala, A.A.; Macosko, C.W. Graphene/polymer nanocomposites. Macromolecules 2010, 43, 6515–6530. [Google Scholar] [CrossRef]
- Sadasivuni, K.K.; Ponnamma, D.; Thomas, S.; Grohens, Y. Evolution from graphite to graphene elastomer composites. Prog. Polym. Sci. 2014, 39, 749–780. [Google Scholar] [CrossRef]
- Kuila, T.; Bose, S.; Mishra, A.K.; Khanra, P.; Kim, N.H.; Lee, J.H. Chemical functionalization of graphene and its applications. Prog. Mater. Sci. 2012, 57, 1061–1105. [Google Scholar] [CrossRef]
- Chatterjee, S.; Nafezarefi, F.; Tai, N.H.; Schlagenhauf, L.; Nüesch, F.A.; Chu, B.T.T. Size and synergy effects of nanofiller hybrids including graphene nanoplatelets and carbon nanotubes in mechanical properties of epoxy composites. Carbon 2012, 50, 5380–5386. [Google Scholar] [CrossRef]
- Das, A.; Kasaliwal, G.R.; Jurk, R.; Boldt, R.; Fischer, D.; Stöckelhuber, K.W.; Heinrich, G. Rubber composites based on graphene nanoplatelets, expanded graphite, carbon nanotubes and their combination: A comparative study. Compos. Sci. Technol. 2012, 72, 1961–1967. [Google Scholar] [CrossRef]
- Celzard, A.; McRae, E.; Deleuze, C.; Dufort, M.; Furdin, G.; Marêché, J. Critical concentration in percolating systems containing a high-aspect-ratio filler. Phys. Rev. B 1996, 53, 6209–6214. [Google Scholar] [CrossRef]
- Li, J.; Wong, P.S.; Kim, J.K. Hybrid nanocomposites containing carbon nanotubes and graphite nanoplatelets. Mater. Sci. Eng. A 2008, 483–484, 660–663. [Google Scholar] [CrossRef]
- Yu, A.; Ramesh, P.; Sun, X.; Bekyarova, E.; Itkis, M.E.; Haddon, R.C. Enhanced thermal conductivity in a hybrid graphite nanoplatelet-carbon nanotube filler for epoxy composites. Adv. Mater. 2008, 20, 4740–4744. [Google Scholar] [CrossRef]
- Zhang, S.; Yin, S.; Rong, C.; Huo, P.; Jiang, Z.; Wang, G. Synergistic effects of functionalized graphene and functionalized multi-walled carbon nanotubes on the electrical and mechanical properties of poly(ether sulfone) composites. Eur. Polym. J. 2013, 49, 3125–3134. [Google Scholar] [CrossRef]
- He, Z.; Zhang, X.; Chen, M.; Li, M.; Gu, Y.; Zhang, Z.; Li, Q. Effect of the filler structure of carbon nanomaterials on the electrical, thermal, and rheological properties of epoxy composites. J. Appl. Polym. Sci. 2013, 129, 3366–3372. [Google Scholar] [CrossRef]
- Chandrasekaran, S.; Faiella, G.; Prado, L.A.S.A.; Tölle, F.; Mülhaupt, R.; Schulte, K. Thermally reduced graphene oxide acting as a trap for multiwall carbon nanotubes in bi-filler epoxy composites. Compos. Part A Appl. Sci. Manuf. 2013, 49, 51–57. [Google Scholar] [CrossRef]
- Kumar, S.; Sun, L.L.; Caceres, S.; Li, B.; Wood, W.; Perugini, A.; Maguire, R.G.; Zhong, W.H. Dynamic synergy of graphitic nanoplatelets and multi-walled carbon nanotubes in polyetherimide nanocomposites. Nanotechnology 2010, 21, 105702. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.Y.; Lin, W.N.; Huang, Y.L.; Tien, H.W.; Wang, J.Y.; Ma, C.C.M.; Li, S.-M.; Wang, Y.-S. Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites. Carbon 2011, 49, 793–803. [Google Scholar] [CrossRef]
- Shou, Q.L.; Cheng, J.P.; Fang, J.H.; Lu, F.H.; Zhao, J.J.; Tao, X.Y.; Liu, F.; Zhang, X.-B. Thermal conductivity of poly vinylidene fluoride composites filled with expanded graphite and carbon nanotubes. J. Appl. Polym. Sci. 2013, 127, 1697–1702. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, T.; Sreekumar, T.V.; Kumar, S.; Moore, V.C.; Hauge, R.H.; Smalley, R.E. Poly(vinylalcohol)/SWNT composite film. Nano Lett. 2003, 3, 1285–1288. [Google Scholar] [CrossRef]
- Liu, L.; Barber, A.H.; Nuriel, S.; Wagner, H.D. Mechanical properties of functionalized single-walled carbon-nanotube/poly(vinyl alcohol) nanocomposites. Adv. Funct. Mater. 2005, 15, 975–980. [Google Scholar] [CrossRef]
- Prasad, K.E.; Das, B.; Maitra, U.; Ramamurty, U.; Rao, C.N.R. Extraordinary synergy in the mechanical properties of polymer matrix composites reinforced with 2 nanocarbons. Proc. Natl. Acad. Sci. USA 2009, 106, 13186–13189. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Dichiara, A.; Bai, J. Carbon nanotube-graphene nanoplatelet hybrids as high-performance multifunctional reinforcements in epoxy composites. Compos. Sci. Technol. 2013, 74, 221–227. [Google Scholar] [CrossRef]
- Simmons, J.G. Electric tunnel effect between dissimilar electrodes separated by a thin insulating film. J. Appl. Phys. 1963, 34, 2581–2590. [Google Scholar] [CrossRef]
- Hussain, M.; Choa, Y.H.; Niihara, K. Conductive rubber materials for pressure sensors. J. Mater. Sci. Lett. 2001, 20, 525–527. [Google Scholar] [CrossRef]
- Oskouyi, A.B.; Sundararaj, U.; Mertiny, P. Current-voltage characteristics of nanoplatelet-based conductive nanocomposites. Nanoscale Res. Lett. 2014, 9, 369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jawad, S.A.; Al-Jundi, J.; El-Ghanem, H.M. DC electrical properties of graphytized carbon-black filled rubbers. Int. J. Polym. Mater. 2003, 52, 809–820. [Google Scholar] [CrossRef]
- Richard, C.; Balavoine, F.; Schultz, P.; Ebbesen, T.W.; Mioskowski, C. Supramolecular self-assembly of lipid derivatives on carbon nanotubes. Science 2003, 300, 775–778. [Google Scholar] [CrossRef] [PubMed]
- Vaisman, L.; Wagner, H.D.; Marom, G. The role of surfactants in dispersion of carbon nanotubes. Adv. Colloid Interface Sci. 2006, 128, 37–46. [Google Scholar] [CrossRef]
Filler Ratio (MWCNT:GNP) | Glass Transition Temperature Tg (°C) | Sheet Resistance (×105 Ω/sq) | Pyrolysis Temperature Td (°C) |
---|---|---|---|
Neat Epoxy | 93.3 ± 0.5 | 186 ± 29.4 | 350.3 ± 0.4 |
0:10 | 97.0 ± 0.7 | 45.8 ± 2.02 | 359.0 ± 0.3 |
10:0 | 94.2 ± 0.6 | 29.2 ± 3.87 | 355.7 ± 0.4 |
1:9 | 98.6 ± 0.4 | 13.4 ± 6.09 | 358.0 ± 0.5 |
3:7 | 97.0 ± 0.3 | 8.92 ± 7.49 | 357.3 ± 0.3 |
5:5 | 95.8 ± 0.9 | 4.28 ± 0.13 | 357.0 ± 0.2 |
7:3 | 96.7 ± 0.4 | 12.9 ± 6.28 | 357.6 ± 0.6 |
9:1 | 97.6 ± 0.2 | 2.15 ± 1.11 | 354.3 ± 0.2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jen, Y.-M.; Huang, J.-C. Synergistic Effect on the Thermomechanical and Electrical Properties of Epoxy Composites with the Enhancement of Carbon Nanotubes and Graphene Nano Platelets. Materials 2019, 12, 255. https://doi.org/10.3390/ma12020255
Jen Y-M, Huang J-C. Synergistic Effect on the Thermomechanical and Electrical Properties of Epoxy Composites with the Enhancement of Carbon Nanotubes and Graphene Nano Platelets. Materials. 2019; 12(2):255. https://doi.org/10.3390/ma12020255
Chicago/Turabian StyleJen, Yi-Ming, and Jui-Cheng Huang. 2019. "Synergistic Effect on the Thermomechanical and Electrical Properties of Epoxy Composites with the Enhancement of Carbon Nanotubes and Graphene Nano Platelets" Materials 12, no. 2: 255. https://doi.org/10.3390/ma12020255
APA StyleJen, Y. -M., & Huang, J. -C. (2019). Synergistic Effect on the Thermomechanical and Electrical Properties of Epoxy Composites with the Enhancement of Carbon Nanotubes and Graphene Nano Platelets. Materials, 12(2), 255. https://doi.org/10.3390/ma12020255