The Mix Ratio Study of Self-Stressed Anti-Washout Underwater Concrete Used in Nondrainage Strengthening
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Performance Requirements
2.2. Main Materials
2.3. Mix Design
2.4. Specimens Preparation
2.5. Test Methods
2.6. Orthogonal Test Design
3. Results and Discussion
3.1. Fluidity
3.1.1. Range Analysis for Fluidity Test
3.1.2. Effect of Factors on Fluidity
3.2. Expansibility
3.2.1. Range Analysis for Expansibility Test
3.2.2. Effect of Factors on Expansibility
3.3. Anti-Dispersity
3.3.1. Range Analysis for Anti-Dispersity Test
3.3.2. Effect of Factors on Anti-Dispersity
3.4. Strength
3.4.1. Range Analysis for Strength Test
3.4.2. Effect of Factors on Strength
3.5. Determining the Optimal Mix Ratio
3.5.1. Optical Mix Ratio
3.5.2. Validation of Optimal Mix Ratio
3.6. Mix Ratio of SSAWC in Other Strength Grades
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- The Economist. Infrastructure in the rich world: Building works. Economist 2015, 8953, 55–56. [Google Scholar]
- Lehman, D.E.; Gookin, S.E. Repair of earthquake-damaged bridge columns. ACI Struct. J. 2001, 98, 233–242. [Google Scholar]
- Wei, R.; Sneed, L.H. Test Results and Nonlinear Analysis of RC T-beams Strengthened by Bonded Steel Plates. Concr. Struct. Mater. 2015, 9, 133–143. [Google Scholar] [Green Version]
- Mohamed, H.M.; Afifi, M.Z. Performance Evaluation of Concrete Columns Reinforced Longitudinally with FRP Bars and Confined with FRP Hoops and Spirals under Axial Load. Bridge Eng. 2014, 19, 04014020. [Google Scholar] [CrossRef]
- Saeed, H.Z.; Khan, Q.U.Z. Experimental and finite element investigation of strengthened LSC bridge piers under Quasi-Static Cyclic Load Test. Compos. Struct. 2015, 131, 556–564. [Google Scholar] [CrossRef]
- Anant Parghi, M.; Alam, S. Seismic behavior of deficient reinforced concrete bridge piers confined with FRP—A fractional factorial analysis. Eng. Struct. 2016, 126, 531–546. [Google Scholar] [CrossRef]
- Ai, J.; Shi, L.Y. Discussion of design and construction method on extraneous prestressed strengthening technique for bridge. J. Southeast Univ. 2002, 32, 771–774. [Google Scholar]
- Lin, W.; Taniguchi, N. Novel Method for Retrofitting Superstructures and Piers in Aged Steel Railway Bridges. Bridge Eng. 2017, 22, 05017009. [Google Scholar] [CrossRef]
- Zhu, J.; Su, M. The ICCP-SS technique for retrofitting reinforced concrete compressive members subjected to corrosion. Constr. Build. Mater. 2018, 167, 669–679. [Google Scholar] [CrossRef]
- Menkulasi, F.; Baghi, H. Rehabilitation of Deteriorated Timber Piles with Fiber Reinforced Polymer Composites—IABSE Symposium Report. In Proceedings of the International Association for Bridge and Structural Engineering, Vancouver, BC, Canada, 21–23 September 2017; pp. 381–388. [Google Scholar]
- Yi, N.H.; Nam, J.W. Evaluation of material and structural performances of developed Aqua-Advanced-FRP for retrofitting of underwater concrete structural members. Constr. Build. Mater. 2010, 24, 566–576. [Google Scholar] [CrossRef]
- Sen, R.; Mullins, G. Application of FRP composites for underwater piles repair. Compos. Part B Eng. 2007, 38, 751–758. [Google Scholar] [CrossRef]
- Wei, Y.; Wu, G. Several innovative strengthening technologies for underwater piers. Build. Struct. 2010, 40, 683–686. (In Chinese) [Google Scholar]
- Yamaguchi, M.; Tsuchida, T. Development of high-viscosity underwater concrete for marine structures. Marine Concrete. In Proceedings of the International Conference on Concrete in the Marine Environment, Concrete Society, London, UK, 22–24 September 1986; pp. 235–245. [Google Scholar]
- Han, B.G.; Zhang, L.Q. Non-Dispersible Underwater Concrete. In Smart and Multifunctional Concrete toward Sustainable Infrastructures; Springer: Singapore, 2017; pp. 369–377. [Google Scholar]
- Jiang, C.-S.; Lu, L.-N. Preparation of high performance non-dispersible concrete. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2004, 19, 67–69. [Google Scholar] [CrossRef]
- Zhang, D.C.; Xu, D.Y. Research on High Performance Sulfoaluminate Cement Underwater Non-Dispersed Concrete. Adv. Mater. Res. 2011, 306–307, 956–960. [Google Scholar] [CrossRef]
- Assaad, J.J.; Daou, Y.; Salman, H. Correlating washout to strength loss of underwater concrete. Inst. Civ. Eng. 2011, 106, 529–536. [Google Scholar] [CrossRef]
- Heniegal, A.M.; Maaty, A.A.E.S.; Agwa, I.S. Simulation of the behavior of pressurized underwater concrete. Alex. Eng. 2015, 54, 183–195. [Google Scholar] [CrossRef] [Green Version]
- Khayat, K.H. Effects of anti-washout admixtures on fresh concrete properties. ACI Mater. J. 1995, 92, 164–171. [Google Scholar]
- Niu, J.S.; Ma, X. Effect of Fly Ash on The Workability of Non-dispersible Underwater Concrete. Adv. Mater. Res. 2011, 194–196, 942–946. [Google Scholar]
- Zhang, M.; Zhou, S. Study on effect of key parameters on properties of anti-washout underwater concrete. Concrete 2017, 8, 140–144. (In Chinese) [Google Scholar]
- Zhang, M.; Chen, L. Effect of main compositions of anti-washout admixture on paste. Mater. Res. Innov. 2015, 19, 191–194. [Google Scholar] [CrossRef]
- Khayat, K.H.; Assaad, J. Relationship between Washout Resistance and Rheological Properties of High-Performance Underwater Concrete. ACI Mater. J. 2003, 100, 185–193. [Google Scholar]
- Ortega, J.M.; Albaladejo, A. Influence of using slag cement on the microstructure and durability related properties of cement grouts for micropiles. Constr. Build. Mater. 2013, 38, 84–93. [Google Scholar] [CrossRef]
- Ortega, J.M.; Esteban, M.D. Long-Term Behaviour of Fly Ash and Slag Cement Grouts for Micropiles Exposed to a Sulphate Aggressive Medium. Materials 2017, 10, 598. [Google Scholar] [CrossRef] [PubMed]
- Ramezanianpour, A.A.; Malhotra, V.M. Effect of curing on the compressive strength, resistance to chloride-ion penetration and porosity of concretes incorporating slag, fly ash or silica fume. Cem. Concr. Compos. 1995, 17, 125–133. [Google Scholar] [CrossRef]
- Naik, T.R.; Singh, S.S. Permeability of concrete containing large amounts of fly ash. Cem. Concr. Res. 1994, 24, 913–922. [Google Scholar] [CrossRef]
- Zhao, J.; Zhu, Z.P. Durability Study of Non-Dispersion Underwater Concrete in Sea Water Environment. J. Dalian Jiaotong Univ. 2017, 38, 86–89. (In Chinese) [Google Scholar]
- Joshaghani, A.; Balapour, M. Effect of controlled environmental conditions on mechanical, microstructural and durability properties of cement mortar. Constr. Build. Mater. 2018, 164, 134–149. [Google Scholar] [CrossRef]
- Qu, X.S.; Liu, Q. Bond strength between steel and self-compacting lower expansion concrete in composite columns. J. Constr. Steel Res. 2017, 139, 176–187. [Google Scholar] [CrossRef]
- Lu, Y.Y.; Liu, Z.Z. Bond behavior of steel fibers reinforced self-stressing and self-compacting concrete filled steel tube columns. Constr. Build. Mater. 2018, 158, 894–909. [Google Scholar] [CrossRef]
- Calvo, J.L.G.; Gutiérrez, D.R. Comparison between the performance of expansive SCC and expansive conventional concretes in different expansion and curing conditions. Concr. Constr. Build. Mater. 2017, 136, 277–285. [Google Scholar] [CrossRef]
- China National Petroleum Corporation. Q/CNPC 92-2003 Technical Specification for Non-Dispersion Underwater Concrete Construction; China National Petroleum Corporation: Beijing, China, 2003. (In Chinese) [Google Scholar]
- Nagataki, S.; Gomi, H. Expansive admixtures (mainly ettringite). Cem. Concr. Comp. 1998, 20, 163–170. [Google Scholar] [CrossRef]
- Han, J.; Jia, D. Understanding the shrinkage compensating ability of type K expansive agent in concrete. Constr. Build. Mater. 2016, 116, 36–44. [Google Scholar] [CrossRef]
- Oliveira, M.J.; Ribeiro, A.B. Combined effect of expansive and shrinkage reducing admixtures to control autogenous shrinkage in self-compacting concrete. Constr. Build. Mater. 2014, 52, 267–275. [Google Scholar] [CrossRef]
- China Architecture and Building Press. JGJ 55-2011 Specification for Mix Proportion Design of Ordinary Concrete; China Architecture and Building Press: Beijing, China, 2011. (In Chinese) [Google Scholar]
- Wang, G.M.; Ma, X.D. Experimental and analytical study on factors influencing biomimetic undulating fin propulsion performance based on orthogonal experimental design. Adv. Robot. 2013, 27, 597–609. [Google Scholar] [CrossRef]
- Wu, Y.F.; Zhao, H.X. Optimization analysis of structure parameters of steam ejector based on CFD and orthogonal test. Energy 2018, 151, 79–93. [Google Scholar] [CrossRef]
- Jiang, B.S.; Zhang, Y. Optimization of concrete design mixing artificial pozzolan based on orthogonal test. In Proceedings of the 5th International Conference on Advanced Design and Manufacturing Engineering, Penang, Malaysia, 15 October 2015; pp. 1412–1415. [Google Scholar]
- Wirier, B.J.; Brown, D.R.; Michels, K.M. Statistical Principles in Experimental Design; McGraw-Hill: New York, NY, USA, 1971. [Google Scholar]
- Park, J.-J.; Moon, J.-H. An Estimation on the Performance of High Fluidity Anti-washout Underwater Concrete. Adv. Mater. Res. 2014, 577–578, 501–504. [Google Scholar] [CrossRef]
- Lu, Y.Y.; Liu, Z.Z. Bond behavior of steel-fiber-reinforced self-stressing and self-compacting concrete-filled steel tube columns for a period of 2.5 years. Constr. Build. Mater. 2018, 167, 33–43. [Google Scholar] [CrossRef]
Chemical Composition | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | Na2Oeq |
---|---|---|---|---|---|---|---|
Results by wt. (%) | 21.88 | 4.49 | 3.45 | 64.65 | 2.36 | 2.44 | 0.51 |
Water Requirement of Normal Consistency (%) | Setting Time (min) | Cube Compressive Strength (MPa) | Flexural Strength (MPa) | Volume Stability | Density (g/cm3) | |||
---|---|---|---|---|---|---|---|---|
Initial Time | Final Time | 3d | 28d | 3d | 28d | |||
25.2 | 138 | 218 | 28.9 | 49.2 | 6.2 | 8.9 | Qualified * | 3.16 |
Cement (kg/m3) | w/b *1 | AWA (Percent Cement) | Sand (kg/m3) | Stone (kg/m3) | βs *2 |
---|---|---|---|---|---|
360 | 0.667 | 3 | 664 | 996 | 0.6 |
Bleeding Rate *1 (%) | Gas Content (%) | pH | Setting Time (h) | |
---|---|---|---|---|
Initial Time | Final Time | |||
0 | 3.4 | 10.9 | 18.3 | 21 |
Cement (kg/m3) | w/b | Expansive Agent (Percent Cement) | Sand (kg/m3) |
---|---|---|---|
405 | 0.5 | 3 | 1350 |
Restrained Expansion Rate after 7 Days *1 (%) | Setting Time (min) | Cube Compressive Strength (MPa) | Fineness | ||
---|---|---|---|---|---|
Initial Time | Final Time | 7d | 28d | Specific Surface Area (m³/kg) | |
0.032 | 175 | 310 | 24.8 | 47.8 | 403 |
Concrete | Cement (kg/m3) | w/b | Water-Reducing Agent (Percent Cement) | Sand (kg/m3) | Stone (kg/m3) | βs |
---|---|---|---|---|---|---|
M1 | 360 | 0.667 | 0 | 715 | 945 | 0.43 |
M2 | 360 | 0.5 | 1 | 715 | 945 | 0.43 |
Water Reducing Ratio *1 (%) | Ratio of Bleeding Rate *2 (%) | Setting Time Different *3 (min) | Cube Compressive Strength Ratio *4 (%) | Gas Content (%) | ||
---|---|---|---|---|---|---|
Initial Time | Final Time | 7d | 28d | |||
25 | 54.7 | +100 | +120 | 158 | 138 | 4 |
Notations | Definition |
---|---|
fcu,0 | target compounding strength of SSAWC in test |
fcu,k1 | design strengths of SSAWC casted and cured in air |
fcu,k2 | design strengths of SSAWC casted and cured underwater |
fb | the compressive strength of the cementing material at 28 days |
t | compressive strength ratio of specimens made underwater to those made in air |
σ | standard deviation of strength |
w/b, w/c, #x3B2; | water–binder ratio, water–cement ratio, and water–reducing ratio, respectively |
mc0, mb0 | the masses of cement and binder in 1 m3 of SSAWC, respectively |
mg0, ms0, mw0 | the masses of gravel, sand, and water in 1 m3 of SSAWC, respectively |
mwo’ | the water consumptions before using water-reducing agent in 1 m3 of SSAWC |
αa, αb | regression coefficient |
ρc, ρg, ρs, ρw | the densities of cement, fume, gravel, sand, and water, respectively |
α | the volume of air in per unit volume of SSAWC |
βs | the ratio of the quality of fine aggregate to the quality of all of aggregate |
Cement (kg/m3) | w/b | Admixture (Percent Cement) * | Aggregate (kg/m3) | βs (%) | |||
---|---|---|---|---|---|---|---|
AWA | EA | WRA | Sand | Stone | |||
433.3 | 0.43 | 3 | 10 | 1 | 692 | 995 | 41 |
Slump (mm) | Slump Flow (mm) | Restrained Expansion Rate at 14 Days (%) | pH Value | Underwater Strength at 28 Days (MPa) | Strength at 28 Days (MPa) | Strength Ratio |
---|---|---|---|---|---|---|
250 | 420 | 0.038 | 10.22 | 37.2 | 45.9 | 0.810 |
Factors | A: w/b | B: AWA (Percent Cement) | C: EA (Percent Cement) | D: WRA (Percent Cement) | E: βs (%) |
---|---|---|---|---|---|
Level 1 | 0.41 | 2.5 | 7 | 0.8 | 38 |
Level 2 | 0.43 | 3 | 10 | 1 | 41 |
Level 3 | 0.45 | 3.5 | 13 | 1.2 | 44 |
Group | Cement (kg/m3) | w/b | Admixture (Percent Cement) | Aggregate (kg/m3) | βs (%) | Mix Ratio | |||
---|---|---|---|---|---|---|---|---|---|
AWA | EA | WRA | Sand | Stone | |||||
1 | 469.5 | 0.41 | 2.5 | 7 | 0.8 | 634 | 1034 | 38 | A1B1C1D1E1 * |
2 | 454.4 | 0.41 | 3 | 10 | 1 | 684 | 984 | 41 | A1B2C2D2E2 |
3 | 439.2 | 0.41 | 3.5 | 13 | 1.2 | 717 | 950 | 44 | A1B3C3D3E3 |
4 | 447.7 | 0.43 | 2.5 | 7 | 1 | 692 | 995 | 41 | A2B1C1D2E2 |
5 | 433.3 | 0.43 | 3 | 10 | 1.2 | 742 | 945 | 44 | A2B2C2D3E3 |
6 | 418.8 | 0.43 | 3.5 | 13 | 0.8 | 641 | 1046 | 38 | A2B3C3D1E1 |
7 | 414 | 0.45 | 2.5 | 10 | 0.8 | 750 | 955 | 44 | A3B1C2D1E3 |
8 | 400.2 | 0.45 | 3 | 13 | 1 | 648 | 1057 | 38 | A3B2C3D2E1 |
9 | 427.8 | 0.45 | 3.5 | 7 | 1.2 | 699 | 1006 | 41 | A3B3C1D3E2 |
10 | 439.2 | 0.41 | 2.5 | 13 | 1.2 | 684 | 984 | 41 | A1B1C3D3E2 |
11 | 469.5 | 0.41 | 3 | 7 | 0.8 | 734 | 934 | 44 | A1B2C1D1E3 |
12 | 454.4 | 0.41 | 3.5 | 10 | 1 | 634 | 1034 | 38 | A1B3C2D2E1 |
13 | 433.3 | 0.43 | 2.5 | 10 | 1.2 | 641 | 1046 | 38 | A2B1C2D3E1 |
14 | 418.8 | 0.43 | 3 | 13 | 0.8 | 692 | 995 | 41 | A2B2C3D1E2 |
15 | 447.7 | 0.43 | 3.5 | 7 | 1 | 742 | 945 | 44 | A2B3C1D2E3 |
16 | 400.2 | 0.45 | 2.5 | 13 | 1 | 750 | 955 | 44 | A3B1C3D2E3 |
17 | 427.8 | 0.45 | 3 | 7 | 1.2 | 648 | 1057 | 38 | A3B2C1D3E1 |
18 | 414 | 0.45 | 3.5 | 10 | 0.8 | 699 | 1006 | 41 | A3B3C2D1E2 |
Group | Slump (mm) | Slump Flow (mm) | Restrained Expansion Rate at 14 Days (%) | pH Value | Strength at 28 Days (MPa) | Underwater Strength at 28 Days (MPa) | Strength Ratio |
---|---|---|---|---|---|---|---|
1 | 230 | 415 | 0.027 | 11.05 | 47.4 | 38.5 | 0.813 |
2 | 235 | 400 | 0.042 | 10.22 | 48.5 | 39.4 | 0.813 |
3 | 225 | 395 | 0.053 | 9.32 | 48.0 | 37.3 | 0.778 |
4 | 245 | 430 | 0.028 | 11.20 | 38.9 | 35.7 | 0.917 |
5 | 245 | 420 | 0.040 | 10.27 | 45.6 | 36.7 | 0.806 |
6 | 235 | 395 | 0.048 | 9.57 | 46.0 | 36.2 | 0.787 |
7 | 250 | 425 | 0.035 | 11.37 | 43.1 | 35.6 | 0.825 |
8 | 250 | 420 | 0.049 | 10.54 | 45.4 | 35.2 | 0.774 |
9 | 250 | 430 | 0.028 | 9.67 | 45.2 | 35.2 | 0.778 |
10 | 230 | 420 | 0.050 | 11.23 | 41.9 | 36.0 | 0.860 |
11 | 235 | 405 | 0.036 | 9.87 | 44.1 | 36.3 | 0.823 |
12 | 230 | 395 | 0.039 | 9.52 | 43.5 | 36.4 | 0.838 |
13 | 225 | 400 | 0.035 | 11.23 | 44.7 | 35.5 | 0.795 |
14 | 230 | 400 | 0.052 | 10.22 | 42.5 | 36.1 | 0.850 |
15 | 210 | 395 | 0.027 | 9.67 | 40.8 | 32.8 | 0.805 |
16 | 245 | 430 | 0.047 | 11.35 | 43.8 | 34.6 | 0.790 |
17 | 230 | 420 | 0.032 | 10.63 | 44.7 | 35.1 | 0.786 |
18 | 235 | 415 | 0.034 | 9.52 | 44.4 | 35.2 | 0.795 |
Group Number | Mix Ratio | Levels of the Factors | Slump (mm) | ||||
---|---|---|---|---|---|---|---|
A | B | C | D | E | |||
1 | A1B1C1D1E1 | 1 | 1 | 1 | 1 | 1 | 230 |
2 | A1B2C2D2E2 | 1 | 2 | 2 | 2 | 2 | 235 |
3 | A1B3C3D3E3 | 1 | 3 | 3 | 3 | 3 | 225 |
4 | A2B1C1D2E2 | 2 | 1 | 1 | 2 | 2 | 245 |
5 | A2B2C2D3E3 | 2 | 2 | 2 | 3 | 3 | 245 |
6 | A2B3C3D1E1 | 2 | 3 | 3 | 1 | 1 | 235 |
7 | A3B1C2D1E3 | 3 | 1 | 2 | 1 | 3 | 250 |
8 | A3B2C3D2E1 | 3 | 2 | 3 | 2 | 1 | 250 |
9 | A3B3C1D3E2 | 3 | 3 | 1 | 3 | 2 | 250 |
10 | A1B1C3D3E2 | 1 | 1 | 3 | 3 | 2 | 230 |
11 | A1B2C1D1E3 | 1 | 2 | 1 | 1 | 3 | 235 |
12 | A1B3C2D2E1 | 1 | 3 | 2 | 2 | 1 | 230 |
13 | A2B1C2D3E1 | 2 | 1 | 2 | 3 | 1 | 225 |
14 | A2B2C3D1E2 | 2 | 2 | 3 | 1 | 2 | 230 |
15 | A2B3C1D2E3 | 2 | 3 | 1 | 2 | 3 | 210 |
16 | A3B1C3D2E3 | 3 | 1 | 3 | 2 | 3 | 245 |
17 | A3B2C1D3E1 | 3 | 2 | 1 | 3 | 1 | 230 |
18 | A3B3C2D1E2 | 3 | 3 | 2 | 1 | 2 | 235 |
K1,j | 230.8 | 237.5 | 233.3 | 235.8 | 233.3 | ||
K2,j | 231.7 | 236.7 | 236.7 | 235.8 | 237.5 | ||
K3,j | 243.3 | 230.8 | 235.8 | 234.2 | 235.0 | ||
Rj | 12.5 | 6.7 | 3.4 | 1.6 | 4.2 |
Number | A | B | C | D | E |
---|---|---|---|---|---|
K1,j | 405.0 | 420.0 | 415.0 | 409.2 | 409.2 |
K2,j | 406.7 | 410.8 | 409.2 | 411.7 | 415.8 |
K3,j | 423.3 | 404.2 | 410.0 | 414.2 | 411.7 |
Rj | 18.3 | 15.8 | 5.8 | 5.0 | 6.6 |
Number | A | B | C | D | E |
---|---|---|---|---|---|
K1,j | 0.041 | 0.037 | 0.030 | 0.039 | 0.038 |
K2,j | 0.038 | 0.042 | 0.038 | 0.039 | 0.039 |
K3,j | 0.038 | 0.038 | 0.050 | 0.040 | 0.040 |
Rj | 0.003 | 0.006 | 0.020 | 0.001 | 0.002 |
Number | A | B | C | D | E |
---|---|---|---|---|---|
K1,j | 10.17 | 11.24 | 10.35 | 10.27 | 10.42 |
K2,j | 10.36 | 10.26 | 10.32 | 10.38 | 10.31 |
K3,j | 10.51 | 9.55 | 10.37 | 10.39 | 10.31 |
Rj | 0.34 | 1.69 | 0.05 | 0.12 | 0.11 |
Number | A | B | C | D | E |
---|---|---|---|---|---|
K1,j | 37.33 | 35.92 | 35.52 | 36.33 | 36.17 |
K2,j | 35.43 | 36.48 | 36.50 | 35.62 | 36.18 |
K3,j | 35.15 | 35.53 | 35.92 | 35.98 | 35.57 |
Rj | 2.18 | 0.95 | 0.98 | 0.71 | 0.61 |
Cement (kg/m3) | w/b | Admixture (Percent Cement) | Aggregate (kg/m3) | βs (%) | |||
---|---|---|---|---|---|---|---|
AWA | EA | WRA | Sand | Stone | |||
433.3 | 0.43 | 2.5 | 10 | 1 | 692 | 995 | 41 |
Slump (mm) | Slump Flow (mm) | Restrained Expansion Rate after 14 Days (%) | pH Value | Underwater Strength at 28 Days (MPa) | Strength at 28 Days (MPa) | Strength Ratio |
---|---|---|---|---|---|---|
245 | 440 | 0.041 | 11.20 | 35.3 | 42.9 | 0.823 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, S.; Jiang, S.-F.; Shen, S.; Wu, Z. The Mix Ratio Study of Self-Stressed Anti-Washout Underwater Concrete Used in Nondrainage Strengthening. Materials 2019, 12, 324. https://doi.org/10.3390/ma12020324
Wu S, Jiang S-F, Shen S, Wu Z. The Mix Ratio Study of Self-Stressed Anti-Washout Underwater Concrete Used in Nondrainage Strengthening. Materials. 2019; 12(2):324. https://doi.org/10.3390/ma12020324
Chicago/Turabian StyleWu, Shaofeng, Shao-Fei Jiang, Sheng Shen, and Zhaoqi Wu. 2019. "The Mix Ratio Study of Self-Stressed Anti-Washout Underwater Concrete Used in Nondrainage Strengthening" Materials 12, no. 2: 324. https://doi.org/10.3390/ma12020324
APA StyleWu, S., Jiang, S. -F., Shen, S., & Wu, Z. (2019). The Mix Ratio Study of Self-Stressed Anti-Washout Underwater Concrete Used in Nondrainage Strengthening. Materials, 12(2), 324. https://doi.org/10.3390/ma12020324