Nonlinear Resonance Vibration Assessment to Evaluate the Freezing and Thawing Resistance of Concrete
Abstract
:1. Introduction
2. Nonlinear Resonance Vibration
3. Experiments and Discussions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Powers, T.C. A working hypothesis for further studies of frost resistance. J. Am. Concr. Inst. 1945, 16, 245–272. [Google Scholar]
- Scherer, G.W.; Valenza, J.J. Mechanisms of frost damage. Mater. Sci. Concr. 2005, 7, 209–246. [Google Scholar]
- Scherer, G.W. Crystallization in pores. Cem. Concr. Res. 1999, 29, 1347–1358. [Google Scholar] [CrossRef]
- Coussy, O.; Monteiro, P.J. Poroelasticmodel for concrete exposed to freezing temperatures. Cem. Concr. Res. 2008, 38, 40–48. [Google Scholar] [CrossRef]
- Zeng, Q.; Fen-Chong, T.; Dangla, P.; Li, K. A study of freezing behavior of cementitious materials by poromechanical approach. Int. J. Solids Struct. 2011, 48, 3267–3273. [Google Scholar] [CrossRef] [Green Version]
- ASTM C94/C94M-17a. Standard Specification for Ready-Mixed Concrete; American Society for Testing and Materials (ASTM) International: West Conshohocken, PA, USA, 2017. [Google Scholar]
- Mardani-Aghabaglou, A.; Andiç-Çakir, Ö.; Ramyar, K. Freeze–thaw resistance and transport properties of high-volume fly ash roller compacted concrete designed by maximum density method. Cem. Concr. Compos. 2013, 37, 259–266. [Google Scholar] [CrossRef]
- Tuyan, M.; Mardani-Aghabaglou, A.; Ramyar, K. Freeze–thaw resistance, mechanical and transport properties of self-consolidating concrete incorporating coarse recycled concrete aggregate. Mater. Des. 2014, 53, 983–991. [Google Scholar] [CrossRef]
- Bogas, J.; de Brito, J.; Ramos, D. Freeze–thaw resistance of concrete produced with fine recycled concrete aggregates. J. Clean. Prod. 2016, 115, 294–306. [Google Scholar] [CrossRef]
- Gokce, A.; Nagataki, S.; Saeki, T.; Hisada, M. Freezing and thawing resistance of air-entrained concrete incorporating recycled coarse aggregate: The role of air content in demolished concrete. Cem. Concr. Res. 2004, 34, 799–806. [Google Scholar] [CrossRef]
- ASTM C457/C457M-16. Standard Test Method for Microscopial Determination of Parameters of the Air-Void System in Hardened Concrete; American Society for Testing and Materials (ASTM) International: West Conshohocken, PA, USA, 2016. [Google Scholar]
- Mehta, P.K.; Monteiro, P.J. Concrete: Microstructure, Properties, and Materials, 4th ed.; McGraw-Hill Education: New York, NY, USA, 2006; pp. 41–80. [Google Scholar]
- Philleo, R.E. A method for analyzing void distribution in air-entrained concrete. Cem. Concr. Aggreg. 1983, 5, 128–130. [Google Scholar]
- Attiogbe, E.K. Volume fraction of protected paste and mean spacing of air voids. ACI Mater. J. 1997, 94, 588–591. [Google Scholar]
- Pleau, R.; Pigeon, M. The use of the flow length concept to assess the efficiency of airentrainment with regards to frost durability: Part I—Description of the test method. Cem. Concr. Aggreg. 1997, 5, 128–130. [Google Scholar]
- Lu, B.; Torquato, S. Nearest-surface distribution functions for polydispersed particle systems. Phys. Rev. A 1992, 45, 5530–5544. [Google Scholar] [CrossRef] [PubMed]
- Mayercsik, N.P.; Felice, R.; Ley, M.T.; Kurtis, K.E. A probabilistic technique for entrained air void analysis in hardened concrete. Cem. Concr. Res. 2014, 59, 16–23. [Google Scholar] [CrossRef]
- Mayercsik, N.P.; Vandamme, M.; Kurtis, K.E. Assessing the efficiency of entrained air voids for freeze-thaw durability through modeling. Cem. Concr. Res. 2016, 88, 43–59. [Google Scholar] [CrossRef]
- Suzuki, T.; Ogata, H.; Takada, R.; Aoki, M.; Ohtsu, M. Use of acoustic emission and X-ray computed tomography for damage evaluation of freeze-thawed concrete. Constr. Build. Mater. 2010, 24, 2347–2352. [Google Scholar] [CrossRef]
- Yim, H.J.; Kim, J.H.; Park, S.J.; Kwak, H.G. Characterization of thermally damaged concrete using a nonlinear ultrasonic method. Cem. Concr. Res. 2012, 42, 1438–1446. [Google Scholar] [CrossRef]
- Yim, H.J.; Park, S.J.; Kim, J.H.; Kwak, H.G. Nonlinear Ultrasonic Method to Evaluate Residual Mechanical Properties of Thermally Damaged Concrete. ACI Mater. J. 2014, 111, 1–11. [Google Scholar] [CrossRef]
- Nagy, P.B. Fatigue damage assessment by nonlinear ultrasonic materials characterization. Ultrasonics 1998, 36, 375–381. [Google Scholar] [CrossRef]
- Herrmann, J.; Kim, J.Y.; Jacobs, L.J.; Qu, J.; Littles, J.W.; Savage, M.F. Assessment of material damage in a nickel-base superalloy using nonlinear Rayleigh surface waves. J. Appl. Phys. 2006, 99, 124913–124918. [Google Scholar] [CrossRef]
- Zaitsev, V.; Nazarov, V.; Gusev, V.; Castagnede, B. Novel nonlinear-modulation acoustic technique for crack detection. NDT&E Int. 2006, 39, 184–194. [Google Scholar]
- Warnemuende, K.; Wu, H.C. Actively modulated acoustic nondestructive evaluation of concrete. Cem. Concr. Res. 2004, 34, 563–570. [Google Scholar] [CrossRef]
- Chen, X.J.; Kim, J.Y.; Kurtis, K.E.; Qu, J.; Shen, C.W.; Jacobs, L.J. Characterization of progressive microcracking in Portland cement mortar using nonlinear ultrasonics. NDT&E Int. 2008, 41, 112–118. [Google Scholar]
- Park, S.J.; Yim, H.J.; Kwak, H.G. Nonlinear Resonance Vibration Method to Estimate Peak Temperature Exposure of Fire-Damaged Concrete. Fire Saf. J. 2014, 69, 36–42. [Google Scholar] [CrossRef]
- Park, S.J.; Park, K.G.; Yim, H.J.; Kwak, H.G. Evaluation of Residual Tensile Strength of Fire-damaged Concrete Using a Nonlinear Resonance Vibration Method. Mag. Concr. Res. 2014, 67, 235–246. [Google Scholar] [CrossRef]
- Park, S.J.; Yim, H.J.; Kwak, H.G. Effects of Post-fire Curing Conditions on the Restoration of Material Properties of Fire-damaged Concrete. Constr. Build. Mater. 2015, 99, 90–98. [Google Scholar] [CrossRef]
- Bouchaala, F.; Payan, C.; Garnier, V.; Balayssac, J.P. Carbonation assessment in concrete by nonlinear ultrasound. Cem. Concr. Res. 2011, 41, 557–559. [Google Scholar] [CrossRef]
- Yim, H.J.; Park, S.J.; Kim, J.H.; Kwak, H.G. Evaluation of Freezing and Thawing Damage of Concrete Using a Nonlinear Ultrasonic Method. Smart Struct. Sys. 2016, 17, 45–58. [Google Scholar] [CrossRef]
- Chen, J.; Bharata, R.; Yin, T.; Wang, Q.; Wang, H.; Zhang, T. Assessment of sulfate attack and freeze–thaw cycle damage of cement-based materials by a nonlinear acoustic technique. Mater. Struct. 2017, 50, 105. [Google Scholar] [CrossRef]
- Van Den Abeele, K.E.A.; Johnson, P.A.; Sutin, A. Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, part I: Nonlinear wave modulation spectroscopy (NWMS). Res. Nondestruct. Eval. 2000, 12, 17–30. [Google Scholar] [CrossRef]
- Van Den Abeele, K.E.A.; Sutin, A.; Carmeliet, J.; Johnson, P.A. Micro-damage diagnostics using nonlinear elastic wave spectroscopy (NEWS). NDT&E Int. 2001, 34, 239–248. [Google Scholar] [Green Version]
- ASTM C231-08b. Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method; American Society for Testing and Materials (ASTM) International: West Conshohocken, PA, USA, 2008. [Google Scholar]
- ASTM C 666-03. Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing; American Society for Testing and Materials (ASTM) International: West Conshohocken, PA, USA, 2008. [Google Scholar]
- Neville, A.M. Properties of Concrete; John Wiley & Sons: New York, NY, USA, 1996. [Google Scholar]
- Klieger, P. Further Studies on the Effect of Entrained Air on Strength and Durability of Concrete with Various Sizes of Aggregate. Highw. Res. Board Bull. 1956, 128, 16–17. [Google Scholar]
- Felice, R.; Freeman, J.M.; Ley, M.T. Durable concrete with modern air-entraining admixtures. Concr. Int. 2014, 36, 37–45. [Google Scholar]
Label | A | B | C | D |
---|---|---|---|---|
Compressive strength [MPa] | 63 | 48 | 52 | 29 |
Air content [%] | 3.5 ± 1.5 | 3.5 ± 1.5 | 0.2 ± 0.1 | 0.6 ± 0.2 |
w/b | 0.34 | 0.41 | 0.50 | 0.60 |
Water [kg/m3] | 165 | 175 | 160 | 171 |
Cement [kg/m3] | 368 | 292 | 320 | 285 |
Fly ash [kg/m3] | - | 43 | - | - |
GGBFS * [kg/m3] | 123 | 86 | - | - |
Sand [kg/m3] | 482 | 493 | 744 | 744 |
Coarse sand [kg/m3] | 324 | 488 | - | - |
Gravel [kg/m3] | 880 | 715 | 1,100 | 1,100 |
Expander [kg/m3] | 49 | 9 | - | - |
HRWRA ** [kg/m3] | 3.92 | 4.35 | - | - |
Oxide composition | CaO | SiO2 | Al2O3 | Fe2O3 | SO3 | MgO | K2O | Na2O |
---|---|---|---|---|---|---|---|---|
Cement | 65.47 | 17.71 | 4.50 | 3.37 | 3.44 | 3.29 | 1.11 | 0.16 |
Fly ash | 11.70 | 56.70 | 17.70 | 5.90 | 1.80 | 1.80 | 1.20 | 1.10 |
GGBFS | 44.30 | 33.70 | 11.60 | 1.20 | 1.50 | 4.30 | 0.40 | 0.20 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.H.; Park, S.-J.; Yim, H.J. Nonlinear Resonance Vibration Assessment to Evaluate the Freezing and Thawing Resistance of Concrete. Materials 2019, 12, 325. https://doi.org/10.3390/ma12020325
Kim JH, Park S-J, Yim HJ. Nonlinear Resonance Vibration Assessment to Evaluate the Freezing and Thawing Resistance of Concrete. Materials. 2019; 12(2):325. https://doi.org/10.3390/ma12020325
Chicago/Turabian StyleKim, Jae Hong, Sun-Jong Park, and Hong Jae Yim. 2019. "Nonlinear Resonance Vibration Assessment to Evaluate the Freezing and Thawing Resistance of Concrete" Materials 12, no. 2: 325. https://doi.org/10.3390/ma12020325
APA StyleKim, J. H., Park, S. -J., & Yim, H. J. (2019). Nonlinear Resonance Vibration Assessment to Evaluate the Freezing and Thawing Resistance of Concrete. Materials, 12(2), 325. https://doi.org/10.3390/ma12020325