First Principles Investigation of Anomalous Pressure-Dependent Thermal Conductivity of Chalcopyrites
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
3.1. Lattice Thermal Conductivity
3.2. Acoustic Phonon Dispersion
3.3. Phonon Relaxation Time
3.4. Thermal Expansion Coeficient
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rashkeev, S.N.; Lambrecht, W.R.L. Second-harmonic generation of I-III-VI2 chalcopyrite semiconductors: Effects of chemical substitutions. Phys. Rev. B 2001, 63, 165212. [Google Scholar] [CrossRef]
- Gui, Y.; Ye, L.; Jin, C.; Zhang, J.; Wang, Y. The nature of the high thermoelectric properties of CuInX2 (X = S, Se and Te): First-principles study. Appl. Surf. Sci. 2018, 458, 564–571. [Google Scholar] [CrossRef]
- Zou, D.; Xie, S.; Liu, Y.; Lin, J.; Li, J. First-principles study of thermoelectric and lattice vibrational properties of chalcopyrite CuGaTe2. J. Alloy. Compd. 2013, 570, 150–155. [Google Scholar] [CrossRef]
- Xu, B.; Li, X.; Qin, Z.; Long, C.; Yang, D.; Sun, J.; Yi, L. Electronic and optical properties of CuGaS2: First-principles calculations. Phys. B Condens. Matter 2011, 406, 946–951. [Google Scholar] [CrossRef]
- Bellabarba, C.; Ganzáles, J.; Rincon, C.; Quintero, M. Photoconductivity and valence band structure of AgInTe2. Solid State Commun. 1986, 58, 243–246. [Google Scholar] [CrossRef]
- Paier, J.; Marsman, M.; Hümmer, K.; Kresse, G.; Gerber, I.C.; Ángyán, J.G. Screened hybrid density functionals applied to solids. J. Chem. Phys. 2006, 124, 154709. [Google Scholar] [CrossRef] [Green Version]
- Yan, B.; Zhang, S.-C. Topological materials. Rep. Prog. Phys. 2012, 75, 96501. [Google Scholar] [CrossRef]
- Ramanujam, J.; Singh, U.P. Copper indium gallium selenide based solar cells—A review. Energy Environ. Sci. 2017, 10, 1306–1319. [Google Scholar] [CrossRef]
- Yao, J.; Takas, N.J.; Schliefert, M.L.; Paprocki, D.S.; Blanchard, P.E.R.; Gou, H.; Mar, A.; Exstrom, C.L.; Darveau, S.A.; Poudeu, P.F.P.; et al. Thermoelectric properties of p-type CuInSe2 chalcopyrites enhanced by introduction of manganese. Phys. Rev. B 2011, 84, 075203. [Google Scholar] [CrossRef]
- Shi, X.; Xi, L.; Fan, J.; Zhang, W.; Chen, L. Cu–Se Bond Network and Thermoelectric Compounds with Complex Diamondlike Structure. Chem. Mater. 2010, 22, 6029–6031. [Google Scholar] [CrossRef]
- Gudelli, V.K.; Kanchana, V.; Vaitheeswaran, G.; Svane, A.; Christensen, N.E. Thermoelectric properties of chalcopyrite type CuGaTe2 and chalcostibite CuSbS2. J. Appl. Phys. 2013, 114, 223707. [Google Scholar] [CrossRef]
- He, J.; Tritt, T.M. Advances in thermoelectric materials research: Looking back and moving forward. Science 2017, 357, eaak9997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Y.; Chen, S.; Wu, W.; Du, Z.; Chao, Y.; Cui, J. Enhanced thermoelectric performance of a chalcopyrite compound CuIn3Se5−xTex (x = 0~0.5) through crystal structure engineering. Sci. Rep. 2017, 7, 40224. [Google Scholar] [CrossRef] [PubMed]
- Disalvo, F.J. Thermoelectric Cooling and Power Generation. Science 1999, 285, 703–706. [Google Scholar] [CrossRef] [PubMed]
- Khaledialidusti, R.; Mishra, A.K.; Barnoush, A. Temperature-dependent properties of magnetic CuFeS2 from first-principles calculations: Structure, mechanics, and thermodynamics. AIP Adv. 2019, 9, 065021. [Google Scholar] [CrossRef]
- Park, J.; Xia, Y.; Ozoliņš, V. First-principles assessment of thermoelectric properties of CuFeS2. J. Appl. Phys. 2019, 125, 125102. [Google Scholar] [CrossRef]
- Holland, M.G. Phonon Scattering in Semiconductors from Thermal Conductivity Studies. Phys. Rev. 1964, 134, A471–A480. [Google Scholar] [CrossRef]
- Ouyang, T.; Hu, M. Competing mechanism driving diverse pressure dependence of thermal conductivity of XTe (X = Hg, Cd, and Zn). Phys. Rev. B 2015, 92, 235204. [Google Scholar] [CrossRef]
- Yuan, K.; Zhang, X.; Tang, D.; Hu, M. Anomalous pressure effect on the thermal conductivity of ZnO, GaN, and AlN from first-principles calculations. Phys. Rev. B 2018, 98, 144303. [Google Scholar] [CrossRef]
- Slack, G.A.; Andersson, P. Pressure and temperature effects on the thermal conductivity of CuCl. Phys. Rev. B 1982, 26, 1873–1884. [Google Scholar] [CrossRef]
- Ravichandran, N.K.; Broido, D. Non-monotonic pressure dependence of the thermal conductivity of boron arsenide. Nat. Commun. 2019, 10, 827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hofmeister, A.M. Pressure Dependence of Thermal Transport Properties. Proc. Natl. Acad. Sci. USA 2007, 104, 9192–9197. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Verma, A.; Jindal, V. First principles studies of structural, electronic, optical, elastic and thermal properties of Ag-chalcopyrites (AgInX2: X = S, Se). Phys. B Condens. Matter 2014, 438, 97–108. [Google Scholar] [CrossRef]
- Yu, H.; Chen, L.-C.; Pang, H.-J.; Qin, X.-Y.; Qiu, P.-F.; Shi, X.; Chen, L.-D.; Chen, X.-J. Large enhancement of thermoelectric performance in CuInTe2 upon compression. Mater. Today Phys. 2018, 5, 1–6. [Google Scholar] [CrossRef]
- Kosuga, A.; Umekage, K.; Matsuzawa, M.; Sakamoto, Y.; Yamada, I. Room-Temperature Pressure-Induced Nanostructural CuInTe2 Thermoelectric Material with Low Thermal Conductivity. Inorg. Chem. 2014, 53, 6844–6849. [Google Scholar] [CrossRef] [PubMed]
- Omini, M.; Sparavigna, A.C. Beyond the isotropic-model approximation in the theory of thermal conductivity. Phys. Rev. B 1996, 53, 9064–9073. [Google Scholar] [CrossRef]
- Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 2015, 108, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Carrete, J.; Katcho, N.A.; Mingo, N. ShengBTE: A solver of the Boltzmann transport equation for phonons. Comput. Phys. Commun. 2014, 185, 1747–1758. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Perdew, J.P.; Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 1981, 23, 5048–5079. [Google Scholar] [CrossRef] [Green Version]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Vinet, P.; Smith, J.R.; Ferrante, J.; Rose, J.H. Temperature effects on the universal equation of state of solids. Phys. Rev. B 1987, 35, 1945–1953. [Google Scholar] [CrossRef] [Green Version]
- Meng, Q.-B.; Xiao, C.-Y.; Wu, Z.-J.; Feng, K.-A.; Lin, Z.-D.; Zhang, S.-Y. Bulk modulus of ternary chalcopyrite AIBIIIC2VI and AIIBIVC2V semiconductors. Solid State Commun. 1998, 107, 369–371. [Google Scholar] [CrossRef]
- Bettini, M.; Holzapfel, W. Grüneisen parameters of τ phonons in CdSiP2, CuAlS2 and CuGaS2. Solid State Commun. 1975, 16, 27–30. [Google Scholar] [CrossRef]
- Rincón, C.; Villareal, I.; Galindo, H. Microhardness-bulk modulus scaling and pressure-induced phase transformations in chalcopyrite compounds. J. Appl. Phys. 1999, 86, 2355–2357. [Google Scholar] [CrossRef]
- Fernandez, B.; Wasim, S.M. Sound Velocities and Elastic Moduli in CuInTe2 and CuInSe2. Phys. Status solidi (A) 1990, 122, 235–242. [Google Scholar] [CrossRef]
- Deus, P.; Schneider, H.A. A simple estimation of the bulk module of ternary chalcopyrite semiconducting compounds by means of the debye characteristic temperature. Cryst. Res. Technol. 1985, 20, 867–869. [Google Scholar] [CrossRef]
- Madelung, O.; Rössler, U.; Schulz, M. (Eds.) I-III-VI2 Compounds Impurity, Lattice, Transport and Optical Properties: Comparative Data. In Ternary Compounds, Organic Semiconductors; Springer: Berlin/Heidelberg, Germany, 2000; pp. 1–7. [Google Scholar]
- Hahn, H.; Frank, G.; Klingler, W.; Meyer, A.-D.; Störger, G. Untersuchungen über ternäre Chalkogenide. V. Über einige ternäre Chalkogenide mit Chalkopyritstruktur. Z. Anorg. Allg. Chem. 1953, 271, 153–170. [Google Scholar] [CrossRef]
- Togo, A.; Chaput, L.; Tanaka, I.; Hug, G. First-principles phonon calculations of thermal expansion in Ti3SiC2, Ti3AlC2, and Ti3GeC2. Phys. Rev. B 2010, 81, 174301. [Google Scholar] [CrossRef]
- Shibuya, T.; Skelton, J.M.; Jackson, A.J.; Yasuoka, K.; Togo, A.; Tanaka, I.; Walsh, A. Suppression of lattice thermal conductivity by mass-conserving cation mutation in multi-component semiconductors. APL Mater. 2016, 4, 104809. [Google Scholar] [CrossRef] [Green Version]
- Charoenphakdee, A.; Kurosaki, K.; Muta, H.; Uno, M.; Yamanaka, S. Thermal Conductivity of the Ternary Compounds: AgMTe2 and AgM5Te8 (M = Ga or In). Mater. Trans. 2009, 50, 1603–1606. [Google Scholar] [CrossRef]
- Liu, R.; Xi, L.; Liu, H.; Shi, X.; Zhang, W.; Chen, L. Ternary compound CuInTe2: A promising thermoelectric material with diamond-like structure. Chem. Commun. 2012, 48, 3818–3820. [Google Scholar] [CrossRef]
- Kistaiah, P.; Murthy, K.S.; Iyengar, L. Correlation Between the Structural Parameters and the Thermal Conductivity of Chalcopyrite-Type Ternary Compounds. In Thermal Conductivity 18; Ashworth, T.S.D.R., Ed.; Springer: Berlin, Germany, 1985; pp. 127–137. [Google Scholar]
- Rincon, C.; Wasim, S.M.; Valeri-Gil, M.L.; Valeri-Gil, M.L. Room-Temperature Thermal Conductivity and Grüneisen Parameter of the I–III–VI2 Chalcopyrite Compounds. Phys. Status solidi (A) 1995, 147, 409–415. [Google Scholar] [CrossRef]
- McGaughey, A.J.H.; Jain, A.; Kim, H.-Y.; Fu, B. Phonon properties and thermal conductivity from first principles, lattice dynamics, and the Boltzmann transport equation. J. Appl. Phys. 2019, 125, 011101. [Google Scholar] [CrossRef]
- Janssen, G.C.A.M.; Kamminga, J.-D. Stress in hard metal films. Appl. Phys. Lett. 2004, 85, 3086–3088. [Google Scholar] [CrossRef]
- Blumm, J.; Lindemann, A.; Meyer, M.; Strasser, C. Characterization of PTFE Using Advanced Thermal Analysis Techniques. Int. J. Thermophys. 2010, 31, 1919–1927. [Google Scholar] [CrossRef]
- Zou, D.; Yu, C.; Li, Y.; Ou, Y.; Gao, Y. Pressure-induced enhancement in the thermoelectric properties of monolayer and bilayer SnSe2. R. Soc. Open Sci. 2018, 5, 171827. [Google Scholar] [CrossRef] [PubMed]
- Bourassa, R.R.; Lazarus, D.; Blackburn, D.A. Effect of High Pressure on the Thermoelectric Power and Electrical Resistance of Aluminum and Gold. Phys. Rev. 1968, 165, 853–864. [Google Scholar] [CrossRef]
- Zhang, Y.; Jia, X.; Sun, H.; Sun, B.; Liu, B.; Liu, H.; Kong, L.; Ma, H. Effect of high pressure on thermoelectric performance and electronic structure of SnSe via HPHT. J. Alloys. Compd. 2016, 667, 123–129. [Google Scholar] [CrossRef]
- Lindsay, L.; Hua, C.; Ruan, X.; Lee, S. Survey of ab initio phonon thermal transport. Mater. Today Phys. 2018, 7, 106–120. [Google Scholar] [CrossRef]
- Miranda, H.P.C.; Reichardt, S.; Froehlicher, G.; Molina-Sánchez, A.; Berciaud, S.; Wirtz, L. Quantum Interference Effects in Resonant Raman Spectroscopy of Single- and Triple-Layer MoTe2 from First-Principles. Nano Lett. 2017, 17, 2381–2388. [Google Scholar] [CrossRef]
- Dove, M.T.; Fang, H. Negative thermal expansion and associated anomalous physical properties: Review of the lattice dynamics theoretical foundation. Rep. Prog. Phys. 2016, 79, 66503. [Google Scholar] [CrossRef]
- Callaway, J. Model for Lattice Thermal Conductivity at Low Temperatures. Phys. Rev. 1959, 113, 1046–1051. [Google Scholar] [CrossRef]
- Yang, J.; Fan, Q.; Yu, Y.; Zhang, W. Pressure Effect of the Vibrational and Thermodynamic Properties of Chalcopyrite-Type Compound AgGaS2: A First-Principles Investigation. Materials 2018, 11, 2370. [Google Scholar] [CrossRef]
Band Gap 1 (eV) | Bulk Modulus 2 (GPa) | Lattice Parameters 2 a (Å), c/a | κ2 (W/mK) | |||||
---|---|---|---|---|---|---|---|---|
This Work | Ref. | This Work | Ref. | This Work | Ref. [41] | This Work | Ref. | |
CuGaS2 | 1.085 | 0.92 [1] | 76.0 | 94 [39] | 5.387, 1.981 | 5.34, 1.95 | 8.2 | 9.3 [46] |
CuInS2 | 0.364 | 0.35 [1] | 64.6 | 75 [40] | 5.597, 2.015 | 5.51, 2.00 | 4.6 | - |
CuInTe2 | 0.469 | 0.02–0.91 [2] | 41.3 | 45 [41] | 6.303, 2.007 | 6.16, 2.00 | 2.9 | 2.7 [47] |
AgInTe2 | 0.976 | 0.91 [5] | 41.2 | 41.1 [42] | 6.582, 1.978 | 6.4, 1.96 | 7.6 | 6.2 [48] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elalfy, L.; Music, D.; Hu, M. First Principles Investigation of Anomalous Pressure-Dependent Thermal Conductivity of Chalcopyrites. Materials 2019, 12, 3491. https://doi.org/10.3390/ma12213491
Elalfy L, Music D, Hu M. First Principles Investigation of Anomalous Pressure-Dependent Thermal Conductivity of Chalcopyrites. Materials. 2019; 12(21):3491. https://doi.org/10.3390/ma12213491
Chicago/Turabian StyleElalfy, Loay, Denis Music, and Ming Hu. 2019. "First Principles Investigation of Anomalous Pressure-Dependent Thermal Conductivity of Chalcopyrites" Materials 12, no. 21: 3491. https://doi.org/10.3390/ma12213491
APA StyleElalfy, L., Music, D., & Hu, M. (2019). First Principles Investigation of Anomalous Pressure-Dependent Thermal Conductivity of Chalcopyrites. Materials, 12(21), 3491. https://doi.org/10.3390/ma12213491