Co-Evaporated CuO-Doped In2O3 1D-Nanostructure for Reversible CH4 Detection at Low Temperatures: Structural Phase Change and Properties
Abstract
:1. Introduction
2. Experimental Details
2.1. Preparation Method
2.2. Co-Evaporation and In Situ Oxidation of Nanocomposite
2.3. Characterization Tools
2.4. Sensor Preparation and Characterization
3. Results and Discussions
3.1. Structural Characterizations
3.2. CH4 Detection at Low Temperatures
3.3. Gas Sensing Mechanism
4. Conclusion
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Shaalan, N.M.; Hamad, D.; Aljaafari, A.; Abdel-Latief, A.Y.; Abdel-Rahim, M.A. Preparation and Characterization of Developed CuxSn1−xO2 Nanocomposite and Its Promising Methane Gas Sensing Properties. Sensors 2019, 19, 2257. [Google Scholar] [CrossRef] [Green Version]
- Navazani, S.; Shokuhfar, A.; Hassanisadi, M.; Di Carlo, A.; Nia, N.Y.; Agresti, A. A PdPt decorated SnO2-rGO nanohybrid for high-performance resistive sensing of methane. J. Taiwan Inst. Chem. Eng. 2019, 95, 438–451. [Google Scholar] [CrossRef]
- Horastani, Z.K.; Sayedi, S.M.; Sheikhi, M.H.; Rahimi, E. Effect of silver additive on electrical conductivity and methane sensitivity of SnO2. Mater. Sci. Semicond. Process. 2015, 35, 38–44. [Google Scholar] [CrossRef]
- Xue, D.; Zhang, S.; Zhang, Z. Hydrothermally prepared porous 3D SnO2 microstructures for methane sensing at lower operating temperatures. Mater. Lett. 2019, 237, 336–339. [Google Scholar] [CrossRef]
- Bunpang, K.; Wisitsoraat, A.; Tuantranont, A.; Singkammo, S.; Phanichphant, S.; Liewhiran, C. Highly selective and sensitive CH4 gas sensors based on flame-spray-made Cr-doped SnO2 particulate films. Sens. Actuators B Chem. 2019, 291, 177–191. [Google Scholar] [CrossRef]
- Zhou, Q.; Lu, Z.; Wei, Z.; Xu, L.; Gui, Y.; Chen, W. Hydrothermal synthesis of hierarchical ultrathin NiO nanoflakes for high-performance CH4 sensing. Front. Chem. 2018, 6, 194–198. [Google Scholar] [CrossRef]
- Sedghi, S.M.; Mortazavi, Y.; Khodadadi, A. Low-temperature CO and CH4 dual selective gas sensor using SnO2 quantum dots prepared by sonochemical method. Sens. Actuators B Chem. 2010, 145, 7–12. [Google Scholar] [CrossRef]
- Choudhary, M.; Mishra, V.; Dwivedi, R. Pd-doped tin-oxide-based thick-film sensor array for detection of H2, CH4, and CO. J. Electron. Mater. 2013, 42, 2793–2802. [Google Scholar] [CrossRef]
- Lu, W.; Ding, D.; Xue, Q.; Du, Y.; Xiong, Y.; Zhang, J.; Pan, X.; Xing, W. Great enhancement of CH4 sensitivity of SnO2 based nanofibers by heterogeneous sensitization and catalytic effect. Sens. Actuators B Chem. 2018, 254, 393–401. [Google Scholar] [CrossRef]
- Kooti, M.; Keshtkar, S.; Askarieh, M.; Rashidi, A. Progress toward a novel methane gas sensor based on SnO2 nanorods-nanoporous graphene hybrid. Sens. Actuators B Chem. 2019, 281, 96–106. [Google Scholar] [CrossRef]
- Shaalan, N.; Rashad, M.; Abdel-Rahim, M. Repeatability of indium oxide gas sensors for detecting methane at low temperature. Mater. Sci. Semicond. Process. 2016, 56, 260–264. [Google Scholar] [CrossRef]
- Shahid, A.; Choi, J.-H.; Rana, A.U.H.S.; Kim, H.-S. Least Squares Neural Network-Based Wireless E-Nose System Using an SnO2 Sensor Array. Sensors 2018, 18, 1446. [Google Scholar] [CrossRef] [Green Version]
- Bet-Moushoul, E.; Mansourpanah, Y.; Farhadi, K.; Tabatabaei, M. TiO2 nanocomposite based polymeric membranes: A review on performance improvement for various applications in chemical engineering processes. Chem. Eng. J. 2016, 283, 29–46. [Google Scholar] [CrossRef]
- Melchionna, M.; Prato, M.; Fornasiero, P. Mix and match metal oxides and nanocarbons for new photocatalytic frontiers. Catal. Today 2016, 277, 202–213. [Google Scholar] [CrossRef]
- Yan, S.; Abhilash, K.; Tang, L.; Yang, M.; Ma, Y.; Xia, Q.; Guo, Q.; Xia, H. Research advances of amorphous metal oxides in electrochemical energy storage and conversion. Small 2019, 15, 1804371. [Google Scholar] [CrossRef]
- Mishra, Y.K.; Adelung, R. ZnO tetrapod materials for functional applications. Mater. Today 2018, 21, 631–651. [Google Scholar] [CrossRef]
- Dontsova, T.A.; Nahirniak, S.V.; Astrelin, I.M. Metal oxide Nanomaterials and Nanocomposites of Ecological Purpose. J. Nanomater. 2019, 2019, 5942194. [Google Scholar] [CrossRef] [Green Version]
- Baek, K.-K.; Tuller, H.L. Electronic characterization of ZnO/CuO heterojunctions. Sens. Actuators B Chem. 1993, 13, 238–240. [Google Scholar] [CrossRef]
- Ushio, Y.; Miyayama, M.; Yanagida, H. Effects of interface states on gas-sensing properties of a CuO/ZnO thin-film heterojunction. Sens. Actuators B Chem. 1994, 17, 221–226. [Google Scholar] [CrossRef]
- Hu, Y.; Zhou, X.; Han, Q.; Cao, Q.; Huang, Y. Sensing properties of CuO–ZnO heterojunction gas sensors. Mater. Sci. Eng. B 2003, 99, 41–43. [Google Scholar] [CrossRef]
- Ling, Z.; Leach, C.; Freer, R. Heterojunction gas sensors for environmental NO2 and CO2 monitoring. J. Eur. Ceram. Soc. 2001, 21, 1977–1980. [Google Scholar] [CrossRef]
- Prathap, P.; Dahiya, A.; Srivastava, M.; Srivastava, S.; Sivaiah, B.; Haranath, D. Anti-reflection In2O3 nanocones for silicon solar cells. Sol. Energy 2014, 106, 102–108. [Google Scholar] [CrossRef]
- Laatar, F.; Harizi, A.; Ezzaouia, H. Optical and Optoelectronic Properties Enhancement of Porous Silicon Treated with Indium Oxide. In Silicon; Springer: Berlin, Germany, 2019; pp. 1–8. [Google Scholar]
- Koida, T.; Ueno, Y.; Shibata, H. In2O3-based transparent conducting oxide films with high electron mobility fabricated at low process temperatures. Phys. Status Solidi A 2018, 215, 1700506. [Google Scholar] [CrossRef]
- Hussein, M.; Shaalan, N.; Shokr, F.; Mansour, S.; MOHARRAMac, A. Improvement of Promising Gas Sensor Synthesized by Transparent In2o3 Film Using Further Thermal Treatment. Dig. J. Nanomater. Biostruct. 2016, 11, 1253–1259. [Google Scholar]
- Addabbo, T.; Bruzzi, M.; Fort, A.; Mugnaini, M.; Vignoli, V. Gas Sensing Properties of In2O3 Nano-Films Obtained by Low-Temperature Pulsed Electron Deposition Technique on Alumina Substrates. Sensors 2018, 18, 4410. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Cao, J.; Cui, W.; Fan, L.; Li, X.; Li, D. Oxygen vacancies and grain boundaries, potential barriers modulation facilitated formaldehyde gas sensing performances for In2O3 hierarchical architectures. Sens. Actuators B Chem. 2018, 255, 159–165. [Google Scholar] [CrossRef]
- Goh, K.W.; Johan, M.R.; Wong, Y.H. Enhanced structural properties of In2O3 nanoparticles at lower calcination temperature synthesized by co-precipitation method. Micro Nano Lett. 2018, 13, 270–275. [Google Scholar] [CrossRef] [Green Version]
- Jothibas, M.; Manoharan, C.; Dhanapandian, S.; Jeyakumar, S.J. Influence of precursor concentration on sprayed In2O3 thin films. Asian J. Chem. 2013, 25, S59. [Google Scholar]
- Chandradass, J.; Bae, D.S.; Kim, K.H. A simple method to prepare indium oxide nanoparticles: Structural, microstructural and magnetic properties. Adv. Powder Technol. 2011, 22, 370–374. [Google Scholar] [CrossRef]
- Li, Z.; Yan, S.; Wu, Z.; Li, H.; Wang, J.; Shen, W.; Wang, Z.; Fu, Y. Hydrogen gas sensor based on mesoporous In2O3 with fast response/recovery and ppb level detection limit. Int. J. Hydrog. Energy 2018, 43, 22746–22755. [Google Scholar] [CrossRef]
- Han, D.; Zhai, L.; Gu, F.; Wang, Z. Highly sensitive NO2 gas sensor of ppb-level detection based on In2O3 nanobricks at low temperature. Sens. Actuators B Chem. 2018, 262, 655–663. [Google Scholar] [CrossRef]
- Waitz, T.; Wagner, T.; Sauerwald, T.; Kohl, C.D.; Tiemann, M. Ordered mesoporous In2O3, synthesis by structure replication and application as a methane gas sensor. Adv. Funct. Mater. 2009, 19, 653–661. [Google Scholar] [CrossRef]
- Tombak, A.; Benhaliliba, M.; Ocak, Y.S.; Kiliçoglu, T. The novel transparent sputtered p-type CuO thin films and Ag/p-CuO/n-Si Schottky diode applications. Results Phys. 2015, 5, 314–321. [Google Scholar] [CrossRef] [Green Version]
- Shaalan, N.M.; Rashad, M.; Abdel-Rahim, M.A. CuO nanoparticles synthesized by microwave-assisted method for methane sensing. Opt. Quant. Electron. 2016, 48, 531. [Google Scholar] [CrossRef]
- Liu, D.; Lei, W.; Qin, S.; Hou, L.; Liu, Z.; Cui, Q.; Chen, Y. Large-scale synthesis of hexagonal corundum-type In2O3 by ball milling with enhanced lithium storage capabilities. J. Mater. Chem. A 2013, 1, 5274–5278. [Google Scholar] [CrossRef] [Green Version]
- Frost, R.L.; Locke, A.; Martens, W.N. Synthesis and Raman spectroscopic characterization of the oxalate mineral wheatleyite Na2Cu2+ (C2O4)2·2H2O. J. Raman Spectrosc. Int. J. Orig. Work All Asp. Raman Spectrosc. Incl. High. Order Process. Also Brillouin Rayleigh Scatt. 2008, 39, 901–908. [Google Scholar]
- Ruhland, B.; Becker, T.; Muller, G. Gas-kinetic interactions of nitrous oxides with SnO2 surfaces. Sens. Actuators B 1998, 50, 85–94. [Google Scholar] [CrossRef]
- Haridas, D.; Gupta, V. Enhanced response characteristics of SnO2 thin film based sensors loaded with Pd clusters for methane detection. Sens. Actuators B 2012, 166–167, 156–164. [Google Scholar] [CrossRef]
- Dey, A. Semiconductor metal oxide gas sensors: A review. Mater. Sci. Eng. B 2018, 229, 206–217. [Google Scholar] [CrossRef]
- Zhang, D.; Chang, H.; Li, P.; Liu, R. Characterization of nickel oxide decorated-reduced graphene oxide nanocomposite and its sensing properties toward methane gas detection. J. Mater. Sci. Mater. Electron. 2016, 27, 3723–3730. [Google Scholar] [CrossRef]
XRD Analyses | ||||||
---|---|---|---|---|---|---|
Samples | Position obs. (2θ) | h k l | Average Crystallite Size (nm) | Lattice Parameter (Å) (a=b=c) | Unit Cell Volume (Å3) | In2O3 (st)No (04-021-4783) (2θ) |
S1 | 21.3048 30.4071 35.2615 37.4905 60.4823 | 2 1 1 2 2 2 0 0 4 1 1 4 2 2 6 | 25.11 | 10.1514 | 1046.11 | 21.3644 30.3924 35.2389 37.4535 60.2597 |
S2 | 21.3182 30.4138 35.2888 37.5208 60.5714 | 2 1 1 2 2 2 0 0 4 1 1 4 2 2 6 | 25.62 | 10.1462 | 1044.51 | 21.3644 30.3924 35.2389 37.4535 60.2597 |
S3 | 21.3287 30.4934 35.4036 37.5412 60.6740 | 2 1 1 2 2 2 0 0 4 1 1 4 2 2 6 | 19.17 | 10.1484 | 1045.19 | 21.3644 30.3924 35.2389 37.4535 60.2597 |
S1 Raman Shift cm−1 | S2 Raman Shift cm−1 | S3 Raman Shift cm−1 |
---|---|---|
110 w | 110 sh | |
133 s | 133 w | |
161 m | ||
218 m | ||
243 w | ||
251 m | ||
282 m | ||
303 vs | 303 m | |
337 vs | 337 sh | |
366 s | ||
413 w | 413 w | |
495 m | ||
562 | ||
593 w | ||
629 w | 622 | |
635 w | ||
680 m | 680 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaalan, N.M.; Hamad, D.; Saber, O. Co-Evaporated CuO-Doped In2O3 1D-Nanostructure for Reversible CH4 Detection at Low Temperatures: Structural Phase Change and Properties. Materials 2019, 12, 4073. https://doi.org/10.3390/ma12244073
Shaalan NM, Hamad D, Saber O. Co-Evaporated CuO-Doped In2O3 1D-Nanostructure for Reversible CH4 Detection at Low Temperatures: Structural Phase Change and Properties. Materials. 2019; 12(24):4073. https://doi.org/10.3390/ma12244073
Chicago/Turabian StyleShaalan, N.M., D. Hamad, and Osama Saber. 2019. "Co-Evaporated CuO-Doped In2O3 1D-Nanostructure for Reversible CH4 Detection at Low Temperatures: Structural Phase Change and Properties" Materials 12, no. 24: 4073. https://doi.org/10.3390/ma12244073
APA StyleShaalan, N. M., Hamad, D., & Saber, O. (2019). Co-Evaporated CuO-Doped In2O3 1D-Nanostructure for Reversible CH4 Detection at Low Temperatures: Structural Phase Change and Properties. Materials, 12(24), 4073. https://doi.org/10.3390/ma12244073