Hybrid Geopolymeric Foams for the Removal of Metallic Ions from Aqueous Waste Solutions
Abstract
:1. Introduction
2. Materials and Method
2.1. Materials
2.2. Preparation of Hybrid Geopolymer Foams (GSil)
2.3. Methods
2.3.1. Physical and Microstructural Assessment
2.3.2. Compressive Behavior
2.3.3. Washing Procedure and Adsorption/Desorption Tests
2.3.4. Chemical Analyses of Aqueous Solutions from Washing Steps: Absorption and Desorption Tests
3. Result and Discussion
3.1. Porous Hybrid Geopolymeric Materials: Preparation and Microstructural Characterization
3.2. Chemical Composition of Washing Solutions
3.3. Adsorption and Desorption Tests: Preliminary Results
3.4. Mechanical Properties
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Monaco, D.; Riccio, A.; Chianese, E.; Adamo, P.; Di Rosa, S.; Fagnano, M. Chemical characterization and spatial distribution of PAHs and heavy hydrocarbons in rural sites of Campania Region, South Italy. Environ. Sci. Pollut. Res. 2015, 22, 14993–15003. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Leung, J.Y.S.; Geng, X.; Chen, S.; Huang, X.; Li, H.; Huang, Z.; Zhu, L.; Chen, J.; Lu, Y. Heavy metal contamination of soil and water in the vicinity of anabandoned e-waste recycling site: Implications for dissemination ofheavy metals. Sci. Total Environ. 2015, 506, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Monaco, D.; Chianese, E.; Riccio, A.; Delgado Sanchez, A.; Lacorte, S. Spatial distribution of Heavy Hydrocarbons, PAHs and Metalsin polluted areas. The case of“Galicia”, Spain. Mar. Pollut. Bull. 2017, 121, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Kurniawan, T.A.; Chan, G.Y.S.; Lo, W.H.; Babel, S. Physico–chemical treatment techniques for wastewater laden with heavy metals. Chem. Eng. J. 2006, 118, 83–98. [Google Scholar] [CrossRef]
- Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef]
- Hoffmann, F.; Cornelius, M.; Morell, J.; Fröba, M. Silica-Based Mesoporous Organic–Inorganic Hybrid Materials. Angew. Chem. Int. Ed. 2006, 45, 3216–3251. [Google Scholar] [CrossRef]
- Wanga, S.; Peng, Y. Natural zeolites as effective adsorbents in water and wastewater treatment. Chem. Eng. J. 2010, 156, 11–24. [Google Scholar] [CrossRef]
- Breck, D.W. Zeolite Molecular Sieves: Structure, Chemistry and Use; Wiley: New York, NY, USA, 1974. [Google Scholar]
- Liguori, B.; Aprea, P.; Roviello, G.; Ferone, C. Self-supporting zeolites by Geopolymer Gel Conversion. Microporous Mesoporous Mater. 2019, 286, 125–132. [Google Scholar] [CrossRef]
- Rees, C.A.; Provis, J.L.; Lukey, G.C.; van Deventer, J.S.J. The mechanism of geopolymer gel formation investigated through seeded nucleation. Colloid Surf. A 2008, 318, 97–105. [Google Scholar] [CrossRef]
- Rowles, M.; O’Connor, B. Chemical optimisation of the compressive strength of aluminosilicate geopolymers synthesised by sodium silicate activation of metakaolinite. J. Mater. Chem. 2003, 13, 1161–1165. [Google Scholar] [CrossRef]
- Davidovits, J. Geopolymer Chemistry and Applications, 3rd ed.; Institut Geopolymere: Saint Quentin, France, 2011. [Google Scholar]
- Habert, G.; Ouellet-Plamondon, C. Recent update on the environmental impact of geopolymers. RILEM Tech. Lett. 2016, 1, 17–23. [Google Scholar] [CrossRef]
- Coppola, L.; Bellezze, T.; Belli, A.; Bignozzi, M.C.; Bolzoni, F.; Brenna, A.; Cabrini, M.; Candamano, S.; Cappai, M.; Caputo, D.; et al. Binders alternative to Portland cement and waste management for sustainable construction—Part 1. J. Appl. Biomater. Funct. Mater. 2018, 16, 186–202. [Google Scholar] [PubMed] [Green Version]
- Coppola, L.; Bellezze, T.; Belli, A.; Bignozzi, M.C.; Bolzoni, F.; Brenna, A.; Cabrini, M.; Candamano, S.; Cappai, M.; Caputo, D.; et al. Binders alternative to Portland cement and waste management for sustainable construction—Part 2. J. Appl. Biomater. Funct. Mater. 2018, 16, 207–221. [Google Scholar] [PubMed] [Green Version]
- Duxson, P.; Provis, J.L.; Lukey, G.C.; Van Deventer, J.S. The role of inorganic polymer technology in the development of ‘green concrete’. Cem. Concr. Res. 2007, 37, 1590–1597. [Google Scholar] [CrossRef]
- Prud’homme, E.; Michaud, P.; Joussein, E.; Peyratout, C.; Smith, A.; Arrii-Clacens, S.; Clacens, J.M.; Rossignol, S. Silica fume as porogent agent in geo-materials at low temperature. J. Eur. Ceram. Soc. 2010, 30, 1641–1648. [Google Scholar] [CrossRef]
- Medri, V.; Papa, E.; Dedecek, J.; Jirglova, H.; Benito, P.; Vaccari, A.; Landi, E. Effect of metallic Si addition on polymerization degree of in situ foamed alkali-aluminosilicates. Ceram. Int. 2013, 39, 7657–7668. [Google Scholar] [CrossRef]
- Ducman, V.; Korat, L. Characterization of geopolymer fly-ash based foams obtained with the addition of Al powder or H2O2 as foaming agents. Mater. Charact. 2016, 113, 207–213. [Google Scholar] [CrossRef]
- Studart, R.; Gonzenbach, U.T.; Tervoort, E.; Gauckler, L.J. Processing routes to macroporous ceramics: A review. J. Am. Ceram. Soc. 2006, 89, 1771–1789. [Google Scholar] [CrossRef]
- van Jaarsveld, J.G.S.; van Deventer, J.S.J.; Lukey, G.C. A comparative study of kaolinite versus metakaolinite in fly ash based geopolymers containing immo- bilized metals. Chem. Eng. Commun. 2004, 191, 531–549. [Google Scholar] [CrossRef]
- Bankowski, P.; Zou, L.; Hodges, R. Reduction of metal leaching in brown coal fly ash using geopolymers. J. Hazard. Mater. 2004, 114, 59–67. [Google Scholar] [CrossRef]
- Wang, S.; Li, L.; Zhu, Z.H. Solid-state conversion of fly ash to effective adsorbents for Cu removal from wastewater. J. Hazard. Mater. 2007, 139, 254–259. [Google Scholar] [CrossRef] [PubMed]
- Yunsheng, Z.; Wei, S.; Qianli, C.; Lin, C. Synthesis and heavy metal immobilization behaviors of slag based geopolymer. J. Hazard. Mater. 2007, 143, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Wang, W.; Shi, Y. The effects of alkaline dosage and Si/Al ratio on the immobilization of heavy metals in municipal solid waste incineration fly ash-based geopolymer. Chemosphere 2010, 79, 665–671. [Google Scholar] [CrossRef] [PubMed]
- Al-Zboon, K.; Al-Harahsheh, M.S.; Hani, F.B. Fly ash-based geopolymer for Pb removal from aqueous solution. J. Hazard. Mater. 2011, 188, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Cheng, T.W.; Lee, M.L.; Ko, M.S.; Ueng, T.H.; Yang, S.F. The heavy metal adsorption characteristics on metakaolin-based geopolymer. Appl. Clay Sci. 2012, 96, 90–96. [Google Scholar] [CrossRef]
- Ge, Y.; Cui, X.; Li, Y.K.Z.; He, Y.; Zhou, Q. Porous geopolymeric spheres for removal of Cu (II) from aqueous solution: Synthesis and evaluation. J. Hazard. Mater. 2015, 283, 244–245. [Google Scholar] [CrossRef] [PubMed]
- Ferone, C.; Capasso, I.; Bonati, A.; Roviello, G.; Montagnaro, F.; Santoro, L.; Turco, R.; Cioffi, R. Sustainable management of water potabilization sludge by means of geopolymers production. J. Clean. Prod. 2019, 229, 1–9. [Google Scholar] [CrossRef]
- Pimraksa, K.; Chindaprasirt, P.; Rungchet, A.; Sagoe-Crentsil, K.; Sato, T. Lightweight geopolymer made of highly porous siliceous materials with various Na2O/Al2O3 and SiO2/Al2O3 ratios. Mater. Sci. Eng. A 2011, 528, 6616–6623. [Google Scholar] [CrossRef]
- Luukkonen, T.; Sarkkinen, M.; Kemppainen, K.; Rämö, J.; Lassi, U. Metakaolin geopolymer characterization and application for ammonium removal from model solutions and landfill leachate. Appl. Clay Sci. 2016, 119, 266–276. [Google Scholar] [CrossRef]
- Ferone, C.; Roviello, G.; Colangelo, F.; Cioffi, R.; Tarallo, O. Novel hybrid organic-geopolymer materials. Appl. Clay Sci. 2013, 73, 42–50. [Google Scholar] [CrossRef]
- Roviello, G.; Menna, C.; Tarallo, O.; Ricciotti, L.; Ferone, C.; Colangelo, F.; Asprone, D.; di Maggio, R.; Cappelletto, E.; Prota, A.; et al. Preparation, structure and properties of hybrid materials based on geopolymers and polysiloxanes. Mater. Des. 2015, 87, 82–94. [Google Scholar] [CrossRef]
- Roviello, G.; Ricciotti, L.; Ferone, C.; Colangelo, F.; Cioffi, R.; Tarallo, O. Synthesis and Characterization of Novel Epoxy Geopolymer Hybrid Composites. Materials 2013, 6, 3943–3962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colangelo, F.; Roviello, G.; Ricciotti, L.; Ferone, C.; Cioffi, R. Preparation and characterization of new geopolymer-epoxy resin hybrid mortars. Materials 2013, 6, 2989–3006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roviello, G.; Ricciotti, L.; Ferone, C.; Colangelo, F.; Tarallo, O. Fire resistant melamine based organic-geopolymer hybrid composites. Cem. Concr. Compos. 2015, 59, 89–99. [Google Scholar] [CrossRef]
- Strini, A.; Roviello, G.; Ricciotti, L.; Ferone, C.; Messina, F.; Schiavi, L.; Cioffi, R. TiO2-Based Photocatalytic Geopolymers for Nitric Oxide Degradation. Materials 2016, 9, 513. [Google Scholar] [CrossRef] [PubMed]
- Roviello, G.; Ricciotti, L.; Tarallo, O.; Ferone, C.; Colangelo, F.; Roviello, V.; Cioffi, R. Innovative fly ash geopolymer-epoxy composites: Preparation, microstructure and mechanical properties. Materials 2016, 9, 461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roviello, G.; Menna, C.; Tarallo, O.; Ricciotti, L.; Messina, F.; Ferone, C.; Asprone, D.; Cioffi, R. Lightweight geopolymer-based hybrid materials. Compos. Part B Eng. 2017, 128, 225–237. [Google Scholar] [CrossRef]
- Colangelo, F.; Roviello, G.; Ricciotti, L.; Ferrándiz-Mas, V.; Messina, F.; Ferone, C.; Tarallo, O.; Cioffi, R.; Cheeseman, C.R. Mechanical and thermal properties of lightweight geopolymer composites containing recycled expanded polystyrene. Cem. Concr. Compos. 2018, 86, 266–272. [Google Scholar] [CrossRef]
- Roviello, G.; Ricciotti, L.; Molino, A.J.; Menna, C.; Ferone, C.; Cioffi, R.; Tarallo, O. Hybrid Geopolymers from Fly Ash and Polysiloxanes. Molecules 2019, 24, 3510. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, S.; Mazumder, M.A.J.; Al-Attas, O.; Husain, T. Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries. Sci. Total Environ. 2016, 569, 476–488. [Google Scholar] [CrossRef]
- Ja¨rup, L. Hazards of heavy metal contamination. Br. Med. Bull. 2003, 68, 167–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metal toxicity and the environment. Molecular, Clinical and Environmental Toxicology. Exp. Suppl. 2012, 101, 133–164. [Google Scholar] [PubMed] [Green Version]
- Chianese, E.; Tirimberio, G.; Riccio, A. Chemical composition and chemical properties of PM10 and PM2.5 in the urban area of Naples: The effects of air masses origin. J. Atmos. Chem. 2019, 77, 151–169. [Google Scholar] [CrossRef]
- Bell, J.L.; Kriven, W.M. Developments in strategic materials. Ceram. Eng. Sci. Proc. 2009, 29, 97–111. [Google Scholar]
- Prud’homme, E.; Michaud, P.; Joussein, E.; Peyratout, C.; Smith, A.; Rossignol, S. In situ inorganic foams prepared from various clays at low temperature. Appl. Clay Sci. 2011, 51, 15–22. [Google Scholar] [CrossRef]
- Abdollahnejad, Z.; Pacheco-Torgal, F.; Félix, T.; Tahri, W.; Barroso Aguiar, J. Mix design, properties and cost analysis of fly ash-based geopolymer foam. Constr. Build. Mater. 2015, 80, 18–30. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.; Zhang, R.; Gong, L.; Li, Y.; Cao, W.; Chenget, X. Development of porous fly ash-based geopolymer with low thermal conductivity. Mater. Des. 2015, 65, 529–533. [Google Scholar] [CrossRef]
- Zhang, Z.; Provis, J.L.; Reid, A.; Wang, H. Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete. Cem. Concr. Compos. 2015, 62, 97–105. [Google Scholar] [CrossRef]
- MacKenzie, K.J.D. Innovative applications of inorganic polymers (geopolymers). In Handbook of Alkali-Activated Cements, Mortars and Concretes; Pacheco-Torgal, F., Labrincha, J., Leonelli, C., Palomo, A., Chindaprasit, P., Eds.; Woodhead Publishing: Cambridge, UK, 2014; pp. 777–805. [Google Scholar]
- Andrejkovicova´, S.; Sudagar, A.; Rocha, J.; Patinha, C.; Hajjaji, W.; Da Silva, E.F.; Velosa, A.; Rocha, F. The effect of natural zeolite on microstructure, mechanical and heavy metals adsorption properties of metakaolin based geopolymers. Appl. Clay Sci. 2016, 126, 141–152. [Google Scholar] [CrossRef]
- Huang, Y.; Han, M.; Yi, R. Microstructure and properties of fly ash-based geopolymeric material with 5A zeolite as a filler. Constr. Build. Mater. 2012, 33, 84–89. [Google Scholar] [CrossRef]
- Hamaideh, A.; Al-Qarallah, B.; Hamdi, M.R.; Mallouh, S.A.A.; Alshaaer, M. Synthesis of geopolymers using local resources for construction and water purification. J. Water Resour. Prot. 2014, 6, 507–513. [Google Scholar] [CrossRef] [Green Version]
- Alshaaer, M.; El-Eswed, B.; Yousef, R.I.; Khalili, F.; Rahier, H. Development of functional geopolymers for water purification, and construction purposes. J. Saudi Chem. Soc. 2012, 20, S85–S92. [Google Scholar] [CrossRef] [Green Version]
Metakaolin | |||||||
SiO2 | Al2O3 | TiO2 | Fe2O3 | K2O | MgO | CaO | others |
52.90 | 41.90 | 1.80 | 1.60 | 0.77 | 0.19 | 0.17 | 0.67 |
Sodium Silicate Solution | |||||||
SiO2 | Na2O | H2O | |||||
27.40 | 8.15 | 64.45 |
Sample | MK | SS | NaOH | DMS | Si | Apparent Density (g cm−3) | Sample’s Mass * (g) |
---|---|---|---|---|---|---|---|
GSil03 | 37.4 | 45.0 | 7.6 | 10.0 | 0.03 | 0.701 ± 0.002 | 2.60990 ± 0.00001 (A) 8.33520 ± 0.00001 (B) |
GSil12 | 37.4 | 45.0 | 7.6 | 10.0 | 0.12 | 0.396 ± 0.003 | 2.93095 ± 0.00001 (A) 9.02261 ± 0.00001 (B) |
Sample | F− (mg/g of Adsorbent) | Cl− (mg/g of Adsorbent) | NO3− (mg/g of Adsorbent) | PO43− (mg/g of Adsorbent) | SO42− (mg/g of Adsorbent) | Na+ (mg/g of Adsorbent) | K+ (mg/g of Adsorbent) |
---|---|---|---|---|---|---|---|
After wash cycle No. 1 | |||||||
GSil3A | 0.000 | 0.104 | 0.106 | 0.091 | 0.100 | 2.777 | 0.342 |
GSil3B | 0.000 | 0.019 | 0.033 | 0.028 | 0.033 | 0.860 | 0.106 |
GSil12A | 0.014 | 0.200 | 0.098 | 0.105 | 0.277 | 9.670 | 0.290 |
GSil12B | 0.022 | 0.263 | 0.046 | 0.056 | 0.346 | 7.396 | 0.183 |
After wash cycle No. 2 | |||||||
GSil3A | 0.000 | 0.076 | 0.053 | 0.049 | 0.084 | 2.895 | 0.178 |
GSil3B | 0.000 | 0.014 | 0.015 | 0.015 | 0.027 | 0.804 | 0.045 |
GSil12A | 0.000 | 0.039 | 0.043 | 0.041 | 0.057 | 2.620 | 0.125 |
GSil12B | 0.006 | 0.033 | 0.015 | 0.021 | 0.053 | 2.464 | 0.048 |
After wash cycle No. 3 | |||||||
GSil3A | 0.000 | 0.066 | 0.054 | 0.050 | 0.087 | 3.081 | 0.198 |
GSil3B | 0.000 | 0.022 | 0.015 | 0.015 | 0.030 | 0.939 | 0.062 |
GSil12AI | 0.000 | 0.058 | 0.044 | 0.040 | 0.047 | 1.136 | 0.156 |
GSil12B | 0.000 | 0.035 | 0.014 | 0.014 | 0.026 | 1.432 | 0.072 |
After wash cycle No. 4 | |||||||
GSil3A | 0.000 | 0.031 | 0.052 | 0.049 | 0.077 | 1.762 | 0.137 |
GSil3B | 0.000 | 0.013 | 0.016 | 0.017 | 0.046 | 1.167 | 0.047 |
GSil12A | 0.000 | 0.017 | 0.000 | 0.038 | 0.043 | 0.662 | 0.106 |
GSil12B | 0.000 | 0.006 | 0.015 | 0.015 | 0.022 | 0.815 | 0.042 |
Sample | Zn2+ | Cd2+ | Pb2+ | Cu2+ |
---|---|---|---|---|
Metal cations concentration after adsorption test (mg/L) | ||||
GSil3A | <lod * | <lod * | 0.013 | <lod * |
GSil3B | 0.028 ± 0.009 | 0.035 ± 0.008 | 0.017 ± 0.004 | 0.062 ± 0.008 |
GSil12A | 0.007 ± 0.002 | 0.008 ± 0.001 | 0.015 ± 0.005 | 0.015 ± 0.005 |
GSil12B | 0.019 ± 0.008 | 0.014 ± 0.007 | 0.027 ± 0.005 | 0.067 ± 0.008 |
Metals concentration after desorption test (mg/L) | ||||
GSil3A | <lod | <lod | <lod | 0.014 ± 0.008 |
GSil3B | <lod | <lod | 0.055 ± 0.004 | 0.13 ± 0.01 |
GSil12A | 0.114 ± 0.005 | 0.016 ± 0.002 | 0.209 ± 0.006 | 0.31 ± 0.02 |
GSil12B | <lod | <lod | 0.021 ± 0.002 | <lod |
Q values for adsorption test (mg/g sample) | ||||
GSil3A | 0.383 | 0.383 | 0.383 | 0.383 |
GSil3B | 0.120 | 0.120 | 0.120 | 0.120 |
GSil12A | 0.341 | 0.341 | 0.341 | 0.341 |
GSil12B | 0.111 | 0.111 | 0.111 | 0.110 |
Sample | σc (MPa) | E (MPa) | ||
---|---|---|---|---|
Before Washing | After Washing | Before Washing | After Washing | |
GSil03 | 10 ± 1 | 11 ± 1 | 800 ± 60 | 1100 ± 200 |
GSil12 | 2.2 ± 0.6 | 2.3 ± 0.8 | 300 ± 50 | 300 ± 50 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roviello, G.; Chianese, E.; Ferone, C.; Ricciotti, L.; Roviello, V.; Cioffi, R.; Tarallo, O. Hybrid Geopolymeric Foams for the Removal of Metallic Ions from Aqueous Waste Solutions. Materials 2019, 12, 4091. https://doi.org/10.3390/ma12244091
Roviello G, Chianese E, Ferone C, Ricciotti L, Roviello V, Cioffi R, Tarallo O. Hybrid Geopolymeric Foams for the Removal of Metallic Ions from Aqueous Waste Solutions. Materials. 2019; 12(24):4091. https://doi.org/10.3390/ma12244091
Chicago/Turabian StyleRoviello, Giuseppina, Elena Chianese, Claudio Ferone, Laura Ricciotti, Valentina Roviello, Raffaele Cioffi, and Oreste Tarallo. 2019. "Hybrid Geopolymeric Foams for the Removal of Metallic Ions from Aqueous Waste Solutions" Materials 12, no. 24: 4091. https://doi.org/10.3390/ma12244091
APA StyleRoviello, G., Chianese, E., Ferone, C., Ricciotti, L., Roviello, V., Cioffi, R., & Tarallo, O. (2019). Hybrid Geopolymeric Foams for the Removal of Metallic Ions from Aqueous Waste Solutions. Materials, 12(24), 4091. https://doi.org/10.3390/ma12244091