Olive Pomace-Derived Carbon Materials—Effect of Carbonization Pressure under CO2 Atmosphere
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
- The combination of elevated pressure, carbon dioxide atmosphere, and high carbonization temperature results in the development of microporous olive pomace-derived carbon materials.
- The carbonization pressure may be considered a useful activation parameter when the production of materials for various new applications is considered, since it contributes to the development of supermicropores and ultramicropores under the carbonization conditions applied.
- The combination of solely physical activation parameters, covering elevated pressure and temperature under carbon dioxide atmosphere, may be considered promising in terms of the development of effective methods of biowaste valorization, including biowaste less suitable for porous materials production.
Funding
Conflicts of Interest
References
- Smoliński, A.; Howaniec, N. Co-gasification of coal/sewage sludge blends to hydrogen-rich gas with the application of simulated high temperature reactor excess heat. Int. J. Hydrog. Energy 2016, 41, 8154–8158. [Google Scholar]
- Howaniec, N.; Smoliński, A. Biowaste utilization in the process of co-gasification with bituminous coal and lignite. Energy 2017, 118, 18–23. [Google Scholar] [CrossRef]
- Smoliński, A.; Howaniec, N.; Bąk, A. Utilization of Energy crops and sewage sludge in the process of co-gasification for Sustainable hydrogen production. Energies 2018, 11, 809. [Google Scholar] [CrossRef]
- Smoliński, A.; Howaniec, N. Chemometric modelling of experimental data on co-gasification of bituminous coal and biomass to hydrogen-rich gas. Waste Biomass Valor 2017, 8, 1577–1586. [Google Scholar] [CrossRef]
- Hosseini Koupaie, E.; Dahadha, S.; Bazyar Lakeh, A.A.; Azizi, A.E. ElbeshbishyEnzymatic pretreatment of lignocellulosic biomass for enhanced biomethane production-A review. J. Environ. Manag. 2019, 233, 774–784. [Google Scholar] [CrossRef]
- Zdeb, J.; Howaniec, N.; Smoliński, A. Utilization of Carbon Dioxide in Coal Gasification—An Experimental Study. Energies 2019, 12, 140. [Google Scholar] [CrossRef]
- Lahijani, P.; Zainal, Z.A.; Mohammadi, M.; Mohamed, A.R. Conversion of the greenhouse gas CO2 to the fuel gas CO via the Boudouard reaction: A review. Renew. Sustain. Energy Rev. 2015, 41, 615–632. [Google Scholar] [CrossRef]
- Wieclaw-Solny, L.; Wilk, A.; Chwola, T.; Krotki, A.; Tatarczuk, A.; Zdeb, J. Catalytic carbon dioxide hydrogenation as a prospective method for energy storage and utilization of captured CO2. J. Power Technol. 2016, 9, 213–218. [Google Scholar]
- González-García, P. Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications. Renew. Sust. Energy Rev. 2018, 82, 1393–1414. [Google Scholar] [CrossRef]
- Olive Oil Council. Available online: http://www.internationaloliveoil.org/estaticos/view/131-world-olive-oil-figures (accessed on 2 August 2019).
- Mattas, K.; Tsakiridou, E. The functional olive oil market: Marketing prospects and opportunities. In Olives and Olive Oil as Functional Foods; Shahidi, F., Kiritsakis, A., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2017; pp. 647–658. [Google Scholar]
- Akay, F.; Kazan, A.; Celiktas, M.S.; Yesil-Celiktas, O. A holistic engineering approach for utilization of olive pomace. J. Supercrit Fluid 2015, 99, 1–7. [Google Scholar] [CrossRef]
- Nunes, A.; Costa, A.S.G.; Bessada, S.; Santos, J.; Puga, H.; Alves, R.C.; Freitas, V.; Oliveira, M.B.P.P. Olive pomace as a valuable source of bioactive compounds: A study regarding its lipid- and water-soluble components. Sci. Total Environ. 2018. [Google Scholar] [CrossRef]
- Petrov, N.; Budinova, T.; Razvigorova, M.; Parra, J.; Galiatsatou, P. Conversion of olive wastes to volatiles and carbon adsorbents. Biomass Bioenergy 2008, 32, 1303–1310. [Google Scholar] [CrossRef]
- Alvim-Ferraz, M.C.M.; Todo-Bom, C.M. Gaspar Impregnated active carbons to control atmospheric emissions: I. Influence of the impregnated species on the porous structure. J. Colloid Interface Sci. 2003, 259, 133–138. [Google Scholar] [CrossRef]
- Alvim-Ferraz, M.C.M.; Todo-Bom, C.M. Gaspar Impregnated active carbons to control atmospheric emissions: 2. Influence of the raw material on the porous texture. J. Colloid Interface Sci. 2003, 266, 160–167. [Google Scholar] [CrossRef]
- Zabaniotou, A.; Stavropoulos, G.; Skoulou, V. Activated carbon from olive kernels in a two-stage process: Industrial improvement. Bioresour. Technol. 2008, 99, 320–326. [Google Scholar] [CrossRef]
- Rodriguez-Vlaero, M.A.; Martinez-Escandell, M.; Molina-Sabio, M.; Rodriguez-Reinoso, F. CO2 activation of olive stones carbonized under pressure. Carbon 2001, 39, 287–324. [Google Scholar] [CrossRef]
- Ould-Idriss, A.; Stitou, M.; Cuerda-Correa, E.M.; Fernández-González, C.; Macías-García, A.; Alexandre-Franco, M.F.; Gómez-Serrano, V. Preparation of activated carbons from olive-tree wood revisited. I. Chemical activation with H3PO4. Fuel Process Technol. 2011, 92, 261–265. [Google Scholar] [CrossRef]
- Mamaní, A.; Sardella, M.F.; Giménez, M.; Deiana, C. Highly microporous carbons from olive tree pruning: Optimization of chemical activation conditions. J. Environ. Chem. Eng. 2019, 7, 102830. [Google Scholar] [CrossRef]
- Jaouadi, M.; Hbaieb, S.; Guedidi, H.; Reinert, L.; Amdouni, N.; Duclaux, L. Preparation and characterization of carbons from β-cyclodextrin dehydration and from olive pomace activation and their application for boron adsorption. J. Saudi Chem. Soc. 2017, 21, 822–829. [Google Scholar] [CrossRef]
- Bader, N.; Ouederni, A. Functionalized and metal-doped biomass-derived activated carbons for energy storage application. J. Energy Storage 2017, 13, 268–276. [Google Scholar] [CrossRef]
- Annab, H.; Fiol, N.; Villaescusa, I.; Essamri, A. A proposal for the sustainable treatment and valorisation of olive mill wastes. J. Environ. Chem. Eng. 2019, 7, 102803. [Google Scholar] [CrossRef]
- Petrella, A.; Spasiano, D.; Acquafredda, P.; De Vietro, N.; Ranieri, E.; Cosma, P.; Rizzi, V.; Petruzzelli, V.; Petruzzelli, D. Heavy metals retention (Pb(II), Cd(II), Ni(II)) from single and multimetal solutions by natural biosorbents from the olive oil milling operations. Process Saf. Environ. 2018, 114, 79–90. [Google Scholar] [CrossRef]
- Demiral, H.; Demiral, I.; Tümsek, F.; Karabacakoǧlu, B. Adsorption of chromium(VI) from aqueous solution by activated carbon derived from olive bagasse and applicability of different adsorption models. Chem. Eng. J. 2008, 144, 188–196. [Google Scholar] [CrossRef]
- Kaouah, F.; Boumaza, S.; Berrama, T.; Trari, M.; Bendjama, Z. Preparation and characterization of activated carbon from wild olive cores (oleaster) by H3PO4 for the removal of Basic Red 46. J. Clean Prod. 2013, 54, 296–306. [Google Scholar] [CrossRef]
- Ghouma, I.; Jeguirim, M.; Dorge, S.; Limousy, L.; Matei Ghimbeu, C.; Ouederni, A. Activated carbon prepared by physical activation of olive stones for the removal of NO2 at ambient temperature. Comptes Rendus Chim. 2015, 18, 63–74. [Google Scholar] [CrossRef]
- Querejeta, N.; Gil, M.V.; Pevida, C.; Centeno, T.A. Standing out the key role of ultramicroporosity to tailor biomass-derived carbons for CO2 capture. J. Co2 Util. 2018, 26, 1–7. [Google Scholar] [CrossRef]
- Djeridi, W.; Ouederni, A.; Wiersum, A.D.; Llewellyn, P.L.; El Mir, L. High pressure methane adsorption on microporous carbon monoliths prepared by olives stones. Mater. Lett. 2013, 99, 184–187. [Google Scholar] [CrossRef]
- Rodríguez-Reinoso, F.; Nakagawa, Y.; Silvestre-Albero, J.; Juárez-Galán, J.M.; Molina-Sabio, M. Correlation of methane uptake with microporosity and surface area of chemically activated carbons. Micropor. Mesopor. Mat. 2008, 115, 603–608. [Google Scholar] [CrossRef]
- Vivo-Vilches, J.F.; Bailón-García, E.; Pérez-Cadenas, A.F.; Carrasco-Marín, F.; Maldonado-Hódar, F.J. Tailoring activated carbons for the development of specific adsorbents of gasoline vapors. J. Hazard Mater. 2013, 263, 533–540. [Google Scholar] [CrossRef]
- Gonzales, M.T.; Rodriguez-Reinoso, F.; Garcia, A.N.; Marcilla, A. CO2 activation of olive stones carbonized under different experimental conditions. Carbon 1997, 35, 159–165. [Google Scholar] [CrossRef]
- Roman, S.; Gonzales, J.F.; Gonzales-Garcia, C.M.; Zamora, F. Control of pore development during CO2 and steam activation of olive stones. Fuel Process Technol. 2008, 89, 715–720. [Google Scholar] [CrossRef]
- Rodriguez-Reinoso, F.; Molina-Sabio, M.; Gonzales, M.T. The use of steam and CO2 as activating agents in the preparation of activated carbons. Carbon 1995, 33, 15–23. [Google Scholar] [CrossRef]
- Benfell, K.E.; Liu, G.; Roberts, D.G.; Harris, D.J.; Lucas, J.A.; Bailey, J.G. Modelling char combustion: The influence of parent coal petrography and pyrolysis pressure on the structure and intrinsic reactivity of its char. Proc. Combust. Inst. 2000, 28, 2233–2241. [Google Scholar] [CrossRef]
- Howaniec, N. The effects of pressure on coal chars porous structure development. Fuel 2016, 172, 118–123. [Google Scholar] [CrossRef]
- Howaniec, N. Development of porous structure of lignite chars at high pressure and temperature. Fuel Process Technol. 2016, 154, 163–167. [Google Scholar] [CrossRef]
- Howaniec, N. Combined Effect of Pressure and Carbon Dioxide Activation on Porous Structure of Lignite Chars. Materials 2019, 12, 1326. [Google Scholar] [CrossRef]
- Howaniec, N.; Smoliński, A. Porous Structure Properties of Andropogon Gerardi Derived Carbon Materials. Materials 2018, 11, 876. [Google Scholar] [CrossRef]
- Smoliński, A.; Howaniec, N. Analysis of Porous Structure Parameters of Biomass Chars Versus Bituminous Coal and Lignite Carbonized at High Pressure and Temperature—A Chemometric Study. Energies 2017, 10, 1457. [Google Scholar] [CrossRef]
- Lowell, S.; Shields, J.E.; Thomas, M.A.; Thommes, M. Characterization of Porous Solids and Powders: Surface. Area, Pore Size and Density; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004. [Google Scholar]
- Ravikovitch, P., I; Vishnyakov, A.; Russo, R.; Neimark, A.V. Unified Approach to Pore Size Characterization of Microporous Carbonaceous Materials from N2, Ar, and CO2 Adsorption Isotherms. Langmuir 2000, 16, 2311–2320. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Bottani, E.J.; Tascon, J.M.D. Adsorption by Carbons; Elsevier Ltd.: Oxford, UK, 2008. [Google Scholar]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
Parameter, Unit | Value |
---|---|
Proximate analysis | |
Moisture 1, %w/w | 5.53 |
Ash 2, % w/w | 7.54 |
Volatiles 3, % w/w | 70.00 |
Fixed carbon 4, % w/w | 16.93 |
Ultimate analysis | |
Sulfur 5, % w/w | 0.12 |
Carbon 6, % w/w | 48.56 |
Hydrogen 6, % w/w | 6.76 |
Nitrogen 7, % w/w | 1.13 |
Oxygen 8, % w/w | 30.98 |
Heating value | |
Higher heating value 9, kJ/kg | 19,460 |
Lower heating value 9, kJ/kg | 17,990 |
Pressure, MPa | Average Pore Diameter, nm N2 Isotherm −196 °C | Mode (DFT), nm N2 Isotherm −196 °C | Mode (MC), nm CO2 Isotherm 0 °C |
---|---|---|---|
0.1 | 2.71 | 0.57 | 0.63 |
1 | 2.35 | 0.60 | 0.55 |
2 | 2.31 | 0.55 | 0.60 |
3 | 2.12 | 0.57 | 0.55 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Howaniec, N. Olive Pomace-Derived Carbon Materials—Effect of Carbonization Pressure under CO2 Atmosphere. Materials 2019, 12, 2872. https://doi.org/10.3390/ma12182872
Howaniec N. Olive Pomace-Derived Carbon Materials—Effect of Carbonization Pressure under CO2 Atmosphere. Materials. 2019; 12(18):2872. https://doi.org/10.3390/ma12182872
Chicago/Turabian StyleHowaniec, Natalia. 2019. "Olive Pomace-Derived Carbon Materials—Effect of Carbonization Pressure under CO2 Atmosphere" Materials 12, no. 18: 2872. https://doi.org/10.3390/ma12182872
APA StyleHowaniec, N. (2019). Olive Pomace-Derived Carbon Materials—Effect of Carbonization Pressure under CO2 Atmosphere. Materials, 12(18), 2872. https://doi.org/10.3390/ma12182872