Physical Characteristics of Coupled Plasma and Its Influence on Weld Formation in Hybrid Laser-Double-Arc Welding
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dilthey, U.; Keller, H. Prospects in laser GMA hybrid welding of steel. In Proceedings of the First International WLT-Conference on Lasers in Manufacturing, Munich, Germany, June 2001; AT-Fachverl: Fellbach, Germany, 2001; pp. 453–465. [Google Scholar]
- Bappa, A. Hybrid laser arc welding: State-of-art review. Opt. Laser. Technol. 2018, 99, 60–71. [Google Scholar]
- Olsen, F.O. Hybrid Laser–Arc Welding; Woodhead Publishing Limited: Great Abington, UK, 2009. [Google Scholar]
- Wei, H.L.; Li, H.; Yang, L.J.; Gao, Y.; Ding, X.P. Arc characteristics and metal transfer process of hybrid laser double GMA welding. Int. J. Adv. Manuf. Technol. 2015, 77, 1019–1028. [Google Scholar] [CrossRef]
- Zhang, C.; Gao, M.; Zeng, X.Y. Influences of synergy effect between laser and arc on laser-arc hybrid welding of aluminum alloys. Opt. Laser. Technol. 2019, 120, 105766. [Google Scholar] [CrossRef]
- Chen, J.; Han, Z.K.; Wang, L.; Wu, C.S. Influence of arc interactions on heat and mass transfer during a two-arc hybrid welding. Int. J. Heat. Mass. Tran. 2019, 11, 119058. [Google Scholar] [CrossRef]
- Kiran, D.V.; Cho, D.W.; Song, W.H.; Na, S.J. Arc behavior in two wire tandem submerged arc welding. J. Mater. Process. Tech. 2014, 214, 1546–1556. [Google Scholar] [CrossRef]
- Li, R.F.; Li, Z.G.; Zhu, Y.Y.; Rong, L. A comparative study of laser beam welding and laser-MIG hybrid welding of Ti-Al-Zr-Fe titanium alloy. Mat. Sci. Eng. 2011, 528, 1138–1142. [Google Scholar] [CrossRef]
- Hu, L.H.; Huang, J.; Liu, C.T.; Liu, X.L. Effects of coupling between the laser plasma and two arcs on metal transfer in CO2 laser double-wire MIG hybrid welding. Opt. Laser. Technol. 2018, 105, 152–161. [Google Scholar] [CrossRef]
- Gu, X.Y.; Li, H.; Yang, L.J.; Gao, Y. Coupling mechanism of laser and arcs of laser-twin-arc hybrid welding and its effect on welding process. Opt. Laser. Technol. 2013, 48, 246–253. [Google Scholar] [CrossRef]
- Gu, X.Y.; Li, H.; Jiang, X.B.; Sheng, H.C. Effect of laser on droplet transfer and welding process stability in hybrid laser + double arc welding. Int. J. Adv. Manuf. Tech. 2017, 89, 2981–2991. [Google Scholar] [CrossRef]
- Gu, X.Y.; Li, H.; Luo, J.S. Lyapunov exponent analysis for the evaluation of hybrid laser double-arc welding process stability. Appl. Optics. 2018, 57, 9053–9061. [Google Scholar] [CrossRef]
- Gu, X.Y.; Yong, D.; Luo, J.S. Study on the alternative burning behavior of arcs in hybrid laser-double-arc welding. Int. J. Adv. Manuf. Tech. 2019, 102, 2581–2590. [Google Scholar] [CrossRef]
- Shinn, B.W.; Farson, D.F.; Denney, P.E. Laser stabilization of arc cathode spots in titanium welding. Sci. Technol. Weld. Join. 2005, 10, 475–481. [Google Scholar] [CrossRef]
- Chen, M.H.; Li, X.Y.; Liu, L.M. Effect of electric field on interaction between laser and arc plasma in laser–arc hybrid welding. IEEE T. Plasma. Sci. 2012, 40, 2045–2050. [Google Scholar] [CrossRef]
- Zhang, Z.Z.; Xu, G.X.; Wu, C.S. Thermal field model for laser pulse GMAW-P hybrid welding of tcs stainless steel based on the predicted keyhole shape. Acta. Metall. Sin. 2011, 47, 1450–1458. [Google Scholar]
- Xu, G.X.; Li, P.F.; Cao, Q.N.; Hu, Q.X.; Du, B.S. Modelling of fluid flow phenomenon in laser+GMAW hybrid welding of aluminum alloy considering three phase coupling and arc plasma shear stress. Opt. Laser. Technol. 2018, 100, 244–255. [Google Scholar] [CrossRef]
- Kiran, D.V.; Cho, D.W.; Song, W.H.; Na, S.J. Arc interaction and molten pool behavior in the three wire submerged arc welding process. Int. J. Heat. Mass. Tran. 2015, 87, 327–340. [Google Scholar] [CrossRef]
- Moradi, M.; Ghoreishi, M.; Frostevarg, J.; Kaplan, A.F.H. An investigation on stability of laser hybrid arc welding. Opt. Laser. Eng. 2013, 51, 481–487. [Google Scholar] [CrossRef]
- Greim, H.R. Plasma Spectroscopy; McGraw-Hill: Cambridge, UK, 1964. [Google Scholar]
- NIST Atomic Spectra Database [DB/OL]. Available online: http://physics.nist.gov/PhysRefData/ ASD/lines_form.html (accessed on 25 October 2019).
- Chen, F.F. Introduction to Plasma Physics; Plemun Press: New York, NY, USA, 1974. [Google Scholar]
- Wang, J.; Wang, C.M.; Meng, X.X.; Hu, X.Y.; Yu, Y.C.; Yu, S.F. Interaction between laser-induced plasma/vapor and arc plasma during fiber laser-MIG hybrid welding. J. Mech. Sci. Technol. 2011, 25, 1529–1533. [Google Scholar] [CrossRef]
- Song, G.; Wang, H.Y.; Li, T.T.; Liu, L.M. Joining mechanism of Mg alloy/steel butt joints with Cu–Zn interlayer by hybrid laser–TIG welding source. J. Iron. Steel. Res. Int. 2018, 25, 221–227. [Google Scholar] [CrossRef]
- Degout, D.; Catherinot, A. Spectroscopic analysis of the plasma created by a double-flux tungsten inert-gas (TIG) arc plasma torch. J. Phys. D. Appl. Phys. 1986, 19, 811–823. [Google Scholar] [CrossRef]
- Xu, G.X.; Wu, C.S.; Ma, X.Z.; Wang, X.Y. Numerical Analysis of Welding Residual Stress and Distortion in Laser plus GMAW Hybrid Welding of Aluminum Alloy T-Joint. Acta. Metall. Sin. 2013, 26, 352–360. [Google Scholar] [CrossRef]
- Xu, G.X.; Li, P.F.; Li, L.; Hu, Q.X.; Zhu, J.; Gu, X.Y.; Du, B.S. Influence of Arc Power on Keyhole-Induced Porosity in Laser + GMAW Hybrid Welding of Aluminum Alloy: Numerical and Experimental Studies. Materials 2019, 12, 1328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Li, G.; Gao, M.; Zeng, X.Y. Microstructure and mechanical properties of narrow gap laser-arc hybrid welded 40 mm thick mild steel. Materials 2018, 10, 106. [Google Scholar] [CrossRef] [PubMed]
C | Mn | Si | P | S | Cr | Ni | Cu | Fe |
---|---|---|---|---|---|---|---|---|
0.14–0.22 | 0.30–0.65 | ≤0.3 | ≤0.05 | ≤0.045 | — | — | — | 99.5–99.7 |
≤0.11 | 1.80–2.10 | 0.65–0.95 | ≤0.025 | ≤0.015 | ≤0.20 | ≤0.30 | ≤0.50 | 95.8–96.4 |
Specimen Number | Laser Power (W) | Average Current (A) | Average Voltage (V) | Welding Speed (mm/s) |
---|---|---|---|---|
1# | 1500 | —— | —— | 5 |
2# | —— | —— | 5 | |
3# | 0 | 111.5 | 30.6 | 5 |
4# | 110.8 | 30.2 | 5 | |
5# | 111.4 | 30.5 | 5 | |
6# | 600 | 113.2 | 31.1 | 5 |
7# | 112.7 | 29.9 | 5 | |
8# | 113.3 | 29.4 | 5 | |
9# | 800 | 114.6 | 28.9 | 5 |
10# | 114.1 | 28.7 | 5 | |
11# | 113.8 | 28.6 | 5 | |
12# | 1300 | 114.4 | 28.2 | 5 |
13# | 115.2 | 28.2 | 5 | |
14# | 114.3 | 27.7 | 5 | |
15# | 1500 | 116.3 | 27.4 | 5 |
16# | 116.8 | 27.3 | 5 | |
17# | 116.2 | 26.9 | 5 | |
18# | 1500 | 116.6 | 27.7 | 8 |
19# | 116.3 | 27.4 | 8 | |
20# | 1800 | 118.4 | 26.7 | 5 |
21# | 117.5 | 26.1 | 5 | |
22# | 117.1 | 25.9 | 5 |
λ/nm | Aki/s | Ek/cm−1 | Ei/cm−1 | gk |
---|---|---|---|---|
629.77927 | 6.12 × 104 | 33,801.572 | 17,927.382 | 5 |
617.33352 | 2.31 × 105 | 34,121.603 | 17,927.382 | 1 |
600.30119 | 1.79 × 105 | 47,960.940 | 31,307.245 | 9 |
606.5482 | 1.07 × 106 | 37,521.161 | 21,038.987 | 5 |
Pure Laser(2#) | DAW(3#) | HLDAW(16#) | |
---|---|---|---|
Weld appearance | |||
Cross section |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, X.; Liu, Y.; Li, W.; Han, Y.; Zheng, K. Physical Characteristics of Coupled Plasma and Its Influence on Weld Formation in Hybrid Laser-Double-Arc Welding. Materials 2019, 12, 4207. https://doi.org/10.3390/ma12244207
Gu X, Liu Y, Li W, Han Y, Zheng K. Physical Characteristics of Coupled Plasma and Its Influence on Weld Formation in Hybrid Laser-Double-Arc Welding. Materials. 2019; 12(24):4207. https://doi.org/10.3390/ma12244207
Chicago/Turabian StyleGu, Xiaoyan, Yuchen Liu, Wenhang Li, Yujun Han, and Kai Zheng. 2019. "Physical Characteristics of Coupled Plasma and Its Influence on Weld Formation in Hybrid Laser-Double-Arc Welding" Materials 12, no. 24: 4207. https://doi.org/10.3390/ma12244207
APA StyleGu, X., Liu, Y., Li, W., Han, Y., & Zheng, K. (2019). Physical Characteristics of Coupled Plasma and Its Influence on Weld Formation in Hybrid Laser-Double-Arc Welding. Materials, 12(24), 4207. https://doi.org/10.3390/ma12244207