Estimation of Cement Composites Fracture Parameters Using Deformation Criterion
Abstract
:1. Introduction
2. Deformation Criterion
3. Experimental Tests
4. Results Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bažant, Z.P. Concrete fracture models: Testing and practice. Eng. Fract. Mech. 2002, 69, 165–205. [Google Scholar] [CrossRef]
- Shah, S.P.; Swartz, S.E.; Ouyang, C. Fracture Mechanics of Concrete: Applications of Fracture Mechanics to Concrete, Rock and other Quasi-Brittle Materials; John Wiley & Sons, Inc.: New York, NY, USA, 1995. [Google Scholar]
- Bažant, Z.P.; Gettu, R.; Jirásek, M.; Barr, B.I.G.; Carol, I.; Carpinteri, A.; Elices, M.; Huet, C.; Mihashi, H.; Nemati, K.M.; et al. RILEM TC QFS Quasibrittle fracture scaling and size effect- Final report. Mater. Struct. 2004, 37, 547–568. [Google Scholar]
- Karihaloo, B.L.; Nallathambi, P. An improved effective crack model for the determination of fracture toughness of concrete. Cem. Concr. Res. 1989, 19, 603–610. [Google Scholar] [CrossRef]
- Spagnoli, A.; Carpinteri, A.; Ferretti, D.; Vantadori, S. An experimental investigation on the quasi-brittle fracture of marble rocks. Fatigue Fract. Eng. Mater. Struct. 2016, 39, 956–968. [Google Scholar] [CrossRef]
- Jenq, Y.S.; Shah, S.P. Features of mechanics of quasi-brittle crack propagation in concrete. Int. J. Fract. 1991, 51, 103–120. [Google Scholar]
- Astm, D-7313. Standard Test Method for Determination Fracture Energy of Asphalt-Aggregate Mixtures Using the Disc-Shaped Compact Tension Geometry; ASTM International: West Conshohocken, PA, USA, 2007. [Google Scholar]
- ASTM. Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness KIC of Metallic Materials; ASTM International: West Conshohocken, PA, USA, 2009. [Google Scholar]
- Kosior-Kazberuk, M.; Kazberuk, A. Determination of the fracture toughness parameters of quasi-brittle materials using cylindrical samples. Ceram. Mater. 2010, 62, 244–248. [Google Scholar]
- Berto, F.; Campagnolo, A.; Elices, M.; Lazzarin, P. A synthesis of Polymethylmethacrylate data from U-notched specimens and V-notches with end holes by means of local energy. Mater. Des. 2013, 49, 826–833. [Google Scholar] [CrossRef]
- Berto, F.; Barati, E. Fracture assessment of U-notches under three point bending by means of local energy density. Mater. Des. 2011, 32, 822–830. [Google Scholar] [CrossRef]
- Gomez, F.J.; Elices, M.; Berto, F.; Lazzarin, P. A generalized notch stress intensity factor for U-notched components loaded under mixed mode. Eng. Fract. Mech. 2008, 75, 4819–4833. [Google Scholar] [CrossRef]
- Torabi, A.R. Sudden fracture from U-notches in fine-grained isostatic graphite under mixed mode I/II loading. Int. J. Fract. 2013, 181, 309–316. [Google Scholar] [CrossRef]
- Dugdale, D. Yielding of steel sheets containing slits. J. Mech. Phys. Solids 1960, 8, 100–104. [Google Scholar] [CrossRef]
- Rice, J.R. Limitations to the small scale yielding approximation for crack tip plasticity. J. Mech. Phys. Solids 1974, 22, 17–26. [Google Scholar] [CrossRef]
- Rice, J.R. The localization of plastic deformation. In Theoretical Applied Mechanics; North-Holland Publishing Company: Amsterdam, The Netherlands, 1976; Volume 1, pp. 207–220. [Google Scholar]
- Panasyuk, V.V.; Andreykiv, A.E.; Parton, V.Z. The Bases of Materials Fracture Mechanics; Naukova Dumka: Kiev, Ukraine, 1988. (In Russian) [Google Scholar]
- Parton, V.Z. Fracture Mechanics: From Theory to Practice; CRC Press: Boca Raton, FL, USA, 1992. [Google Scholar]
- Savruk, M.P.; Kazberuk, A. Two-dimensional fracture mechanics problems for solids with sharp and rounded V-notches. Int. J. Fract. 2010, 161, 79–95. [Google Scholar] [CrossRef]
- Savruk, M.P.; Kazberuk, A. Stress concentration near sharp and rounded V-notches in orthotropic and quasi-orthotropic bodies. Theor. Appl. Fract. Mech. 2016, 84, 166–176. [Google Scholar] [CrossRef]
- Savruk, M.P.; Kazberuk, A. Problems of fracture mechanics of solid bodies with V-shaped notches. Mater. Sci. 2009, 45, 162–180. [Google Scholar] [CrossRef]
- Savruk, M.P.; Kazberuk, A. Relationship between the stress intensity and stress concentration factors for sharp and rounded notches. Mater. Sci. 2006, 42, 725–738. [Google Scholar] [CrossRef]
- Savruk, M.P.; Kazberuk, A. Stress Concentration at Notches; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Rice, J.R. Plastic yielding at a crack tip. In Proceedings of the 1st International Conference on Fracture, Sendai, Japan, 17 October 2012; pp. 283–308. [Google Scholar]
- Cherepanov, G.P. Mechanics of Brittle Fracture; McGraw-Hill: New York, NY, USA, 1979. [Google Scholar]
- Panasyuk, V.V.; Savruk, M.P. Model for plasticity bands in elastoplastic failure mechanics. Mater. Sci. 1992, 28, 41–57. [Google Scholar] [CrossRef]
- Panasyuk, V.V.; Yarema, S.Y. On the Origin of the k—Model and the Model of Plastic Strips. Mater. Sci. 2001, 37, 346–353. [Google Scholar] [CrossRef]
- Kosior-Kazberuk, M.; Kazberuk, A. Application of deformation criterion to assess fracture properties of concrete. In Proceedings of the ICF 2017—14th International Conference on Fracture, Fairfax, VA, USA, 18–23 June 2017; pp. 348–349. [Google Scholar]
- Shah, S.; Carpinteri, A. Fracture Mechanics Test Methods for Concrete; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Shah, S.P. Determination of fracture parameters (KIC and CTODC) of plain concrete using three-point bend tests, Materials and Structures. Kluwer Acad. Publ. 1990, 23, 457–460. [Google Scholar]
- Kitsutaka, Y.; Kanakubo, T. Outline of JCI standard (JCI-S-001-003). Concr. J. 2006, 44, 10–15. [Google Scholar] [CrossRef] [Green Version]
- Savruk, M.P. Stress Intensity Factors in Cracked Bodies; Naukova Dumka: Kiev, Ukraine, 1988. (In Russian) [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kosior-Kazberuk, M.; Kazberuk, A.; Bernatowicz, A. Estimation of Cement Composites Fracture Parameters Using Deformation Criterion. Materials 2019, 12, 4206. https://doi.org/10.3390/ma12244206
Kosior-Kazberuk M, Kazberuk A, Bernatowicz A. Estimation of Cement Composites Fracture Parameters Using Deformation Criterion. Materials. 2019; 12(24):4206. https://doi.org/10.3390/ma12244206
Chicago/Turabian StyleKosior-Kazberuk, Marta, Andrzej Kazberuk, and Anna Bernatowicz. 2019. "Estimation of Cement Composites Fracture Parameters Using Deformation Criterion" Materials 12, no. 24: 4206. https://doi.org/10.3390/ma12244206
APA StyleKosior-Kazberuk, M., Kazberuk, A., & Bernatowicz, A. (2019). Estimation of Cement Composites Fracture Parameters Using Deformation Criterion. Materials, 12(24), 4206. https://doi.org/10.3390/ma12244206