Water-Ionic Liquid Binary Mixture Tailored Resorcinol-Formaldehyde Carbon Aerogels without Added Catalyst
Abstract
:1. Introduction
2. Experimental
2.1. Sol-Gel Synthesis of the Carbon Aerogels
2.2. Characterization Methods
3. Results and Discussion
Morphology of the Carbon Aerogels
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pekala, R.W. Organic aerogels from the polycondensation of resorcinol with formaldehyde. J. Mater. Sci. 1989, 24, 3221–3227. [Google Scholar] [CrossRef]
- ElKhatat, A.M.; Al-Muhtaseb, S.A. Advances in Tailoring Resorcinol-Formaldehyde Organic and Carbon Gels. Adv. Mater. 2012, 23, 2887–2903. [Google Scholar] [CrossRef] [PubMed]
- Arenillas, A.; Menéndez, J.A.; Reichenauer, G.; Celzard, A.; Fierro, V.; Maldonado-Hodar, F.J.; Bailόn-Garcia, E.; Job, N. Organic and Carbon Gels. From Laboratory Synthesis to Applications. In Book Series: Advances in Sol-Gel Derived Materials and Technologies; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Job, N.; Panariello, F.; Marien, J.; Crine, M.; Pirard, J.P.; Léonard, A. Synthesis optimization of organic xerogels produced from convective air-drying of resorcinol-formaldehyde gels. J. Non-Cryst. Solids 2006, 352, 24–34. [Google Scholar] [CrossRef] [Green Version]
- Job, N.; Pirard, R.; Marien, J.; Pirard, J.P. Porous carbon xerogels with texture tailored by pH control during sol-gel process. Carbon 2004, 42, 619–628. [Google Scholar] [CrossRef]
- Rey-Raap, N.; Rodríguez-Sanchez, S.; Alonso-Buenaposada, I.D.; Calvo, E.G.; Menendez, J.A.; Arenillas, A. The enhancement of porosity of carbon xerogels by using additives. Microporous Mesoporous Mater. 2015, 217, 39–45. [Google Scholar] [CrossRef] [Green Version]
- Czakkel, O.; Marthi, K.; Geissler, E.; László, K. Influence of Drying on the Morphology of Resorcinol-Formaldehyde-based Carbon Gels. Microporous Mesoporous Mater. 2005, 86, 124–133. [Google Scholar] [CrossRef]
- Czakkel, O.; Nagy, B.; Geissler, E.; László, K. In-situ investigation of the structural changes of resorcinol-formaldehyde polymer gels during CO2-drying. J. Supercrit. Fluids 2013, 75, 112–119. [Google Scholar] [CrossRef]
- Watanabe, M.; Thomas, M.L.; Zhang, S.; Ueno, K.; Yasuda, T.; Dokko, K. Application of Ionic Liquids to Energy Storage and Conversion Materials and Devices. Chem. Rev. 2017, 117, 7190–7239. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Veith, G.M.; Brown, G.M.; Fulvio, P.F.; Hillesheim, P.C.; Dai, S.; Overbury, S.H. Ionic liquid derived carbons as highly efficient oxygen reduction catalysts: First elucidation of pore size distribution dependent kinetics. Chem. Commun. 2014, 50, 1469–1471. [Google Scholar] [CrossRef]
- Fechler, N.; Fellinger, T.P.; Antonietti, M. “Salt Templating”: A Simple and Sustainable Pathway toward Highly Porous Functional Carbons from Ionic Liquids. Adv. Mater. 2013, 25, 75–79. [Google Scholar] [CrossRef]
- Xie, Z.L.; White, R.J.; Weber, J.; Taubert, A.; Titirici, M.M. Hierarchical porous carbonaceous materials via ionothermal carbonization of carbohydrates. J. Mater. Chem. 2011, 21, 7434–7442. [Google Scholar] [CrossRef]
- Yang, H.; Cui, X.; Deng, Y.; Shi, F. Ionic liquid templated preparation of carbon aerogels based on resorcinol–formaldehyde: Properties and catalytic performance. J. Mater. Chem. 2012, 22, 21852–21856. [Google Scholar] [CrossRef]
- Sun, G.; Su, F.; Xie, L.; Guo, X.Q.; Chen, C. Synthesis of mesoporous carbon aerogels based on metal-containing ionic liquid and its application for electrochemical capacitors. J. Solid State Electrochem. 2016, 20, 1813–1817. [Google Scholar] [CrossRef]
- Chen, A.; Li, Y.; Liu, L.; Yu, Y.; Xia, K.; Wang, Y.; Li, S. Controllable synthesis of nitrogen-doped hollow mesoporous carbon spheres using ionic liquids as template for supercapacitors. Appl. Surf. Sci. 2017, 393, 151–158. [Google Scholar] [CrossRef]
- Nagy, B.; Geissler, E.; László, K. Room temperature ionic liquids to tailor resorcinol-formaldehyde polymer gels. Microporous Mesoporous Mater. 2019. [Google Scholar] [CrossRef]
- Nagy, B.; Bakos, I.; Bertóti, I.; Domán, A.; Menyhárd, A.; Mohai, M.; László, K. Synergism of melamine and GO in the electrocatalytic behaviour of resorcinol-formaldehyde based carbon aerogels. Carbon 2018, 139, 872–879. [Google Scholar] [CrossRef]
- Wang, G.; Ling, Z.; Li, C.; Dong, Q.; Qian, B.; Qui, J. Ionic liquid as template to synthesize carbon xerogels by coupling with KOH activation for supercapacitors. Electrochem. Commun. 2013, 31, 31–34. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- László, K.; Marthi, K.; Rochas, C.; Ehrburger-Dolle, F.; Livet, F.; Geissler, E. Morphological Investigation of chemically treated PET based activated carbons. Langmuir 2004, 20, 1321–1328. [Google Scholar] [CrossRef]
- Porod, G. In Small-Angle X-ray Scattering; Glatter, O., Kratky, O., Eds.; Academic Press: London, UK, 1982. [Google Scholar]
- Moreno-Castilla, C.; Dawidziuk, M.B.; Carrasco-Marín, F.; Morallón, E. Electrochemical performance of carbon gels with variable surface chemistry and physics. Carbon 2012, 50, 3324–3332. [Google Scholar] [CrossRef]
- Nagy, B.; Villar-Rodil, S.; Tascon, J.M.D.; Bakos, I.; László, K. Nitrogen doped mesoporous carbon aerogels and implications for electrocatalytic oxygen reduction reactions. Microporous Mesoporous Mater. 2016, 230, 135–144. [Google Scholar] [CrossRef]
Sample | Initial Water Content of the Solvent (wt %) |
---|---|
C9 * | 9.1 |
C15 | 15.4 |
C20 | 19.7 |
C25 | 25.2 |
C31 | 30.9 |
C37 | 36.7 |
C43 | 42.6 |
C49 | 48.7 |
C55 | 55 |
C100cat | 100 ** |
Sample | dSEM a | SBET b | Vtot c | W0,N2 d | Vmeso e | W0,CO2 f | SSAXS g | RG,SAXS h | SSAXS SBET |
---|---|---|---|---|---|---|---|---|---|
nm | m2/g | cm3/g | cm3/g | cm3/g | cm3/g | m2/g | nm | ||
C9 | 12 ± 2 | 199 | 0.17 | 0.08 | 0.09 | 1064 ± 50 | 8.7 | 5.25 | |
C15 | – | 267 | 0.16 | 0.09 | 0.07 | 0.063 | – | – | |
C20 | – | 469 | 0.30 | 0.20 | 0.10 | 0.053 | – | – | |
C25 | – | 590 | 0.44 | 0.23 | 0.21 | 0.063 | – | – | |
C31 | 14 ± 2 | 713 | 0.68 | 0.28 | 0.40 | 1417 ± 30 | 7.3 | 1.99 | |
C37 | – | 697 | 0.81 | 0.27 | 0.54 | 0.069 | – | – | |
C43 | 20 ± 3 | 644 | 1.1 | 0.25 | 0.85 | – | 1494 ± 30 | 16.8 | 2.32 |
C49 | – | 766 | 0.85 | 0.27 | 0.58 | 0.079 | – | – | |
C55 | 1977 ± 238 | 677 | 0.27 | 0.26 | 0.10 | 0.089 | 787 ± 80 | n.a. j | 1.16 |
C100cat | 20 ± 4 | 865 | 1.7 | 0.35 | 1.35 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagy, B.; Bakos, I.; Geissler, E.; László, K. Water-Ionic Liquid Binary Mixture Tailored Resorcinol-Formaldehyde Carbon Aerogels without Added Catalyst. Materials 2019, 12, 4208. https://doi.org/10.3390/ma12244208
Nagy B, Bakos I, Geissler E, László K. Water-Ionic Liquid Binary Mixture Tailored Resorcinol-Formaldehyde Carbon Aerogels without Added Catalyst. Materials. 2019; 12(24):4208. https://doi.org/10.3390/ma12244208
Chicago/Turabian StyleNagy, Balázs, István Bakos, Erik Geissler, and Krisztina László. 2019. "Water-Ionic Liquid Binary Mixture Tailored Resorcinol-Formaldehyde Carbon Aerogels without Added Catalyst" Materials 12, no. 24: 4208. https://doi.org/10.3390/ma12244208
APA StyleNagy, B., Bakos, I., Geissler, E., & László, K. (2019). Water-Ionic Liquid Binary Mixture Tailored Resorcinol-Formaldehyde Carbon Aerogels without Added Catalyst. Materials, 12(24), 4208. https://doi.org/10.3390/ma12244208