Insights on the Use of Carbon Additives as Promoters of the Visible-Light Photocatalytic Activity of Bi2WO6
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization Techniques
2.3. Photocatalytic Performance
2.4. Toxicity Measurements
3. Results and Discussion
3.1. Characterization of the Photocatalysts
3.2. Photocatalytic Degradation of RhB
3.3. Evolution of the Toxicity of the Solutions During the Photocatalytic Runs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Barry, T.I.; Stone, F.S. The reactions of oxygen at dark and irradiated zinc oxide surface. Proc. Royal Soc. A 1960, 255, 124–144. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Serpone, N.; Pelizzetti, E. Photocatalysis: Fundamentals and Applications, 1st ed.; Wiley Interscience: New York, NY, USA, 1989; ISBN 978–0471626039. [Google Scholar]
- Linsebigler, A.L.; Guangquan, L.; Yate, J.T. Photocatalysis on TiO2 surfaces: Principles, mechanisms and selected results. Chem. Rev. 1995, 95, 735–758. [Google Scholar] [CrossRef]
- Fujishima, A.; Rao, T.N.; Tryk, D.A. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C Photochem. Rev. 2000, 1, 1–21. [Google Scholar] [CrossRef]
- Henderson, M.A. A surface science perspective on TiO2 photocatalysis. Surf. Sci. Rep. 2011, 66, 185–297. [Google Scholar] [CrossRef]
- Herrmann, J.M. Heterogeneous photocatalysis: Fundamentals and applications to the removal of various types of aqueous pollutants. Catal. Today 1999, 53, 115–129. [Google Scholar] [CrossRef]
- Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278. [Google Scholar] [CrossRef]
- Hu, X.; Li, G.; Yu, J.C. Design, fabrication, and modification of nanostructured semiconductor materials for environmental and energy applications. Langmuir 2009, 26, 3031–3039. [Google Scholar] [CrossRef]
- Yu, J.C.; Yu, J.J.; Ho, W.; Zhang, L. Preparation of highly photocatalytic active nano-sized TiO2 particles via ultrasonic irradiation. Chem. Commun. 2001, 1942–1943. [Google Scholar] [CrossRef]
- Ho, W.; Yu, J.C.; Lee, S. Low-temperature hydrothermal synthesis of S-doped TiO2 with visible light photocatalytic activity. J. Solid State Chem. 2006, 179, 1171–1176. [Google Scholar] [CrossRef]
- Fu, H.; Pan, C.; Yao, W.; Zhu, Y. Visible-light-induced degradation of rhodamine B by nanosized Bi2WO6. J. Phys. Chem. B 2005, 190, 22432–22439. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.W.; Zou, Z.G.; Ye, J.H. Photocatalytic decomposition of organic contaminants by Bi2WO6 under visible light irradiation. Catal. Lett. 2004, 92, 53–56. [Google Scholar] [CrossRef]
- Colón, G.; Murcia López, S.; Hidalgo, M.C.; Navío, J.A. Sunlight highly photoactive Bi2WO6-TiO2 heterostructures for rhodamine B degradation. Chem. Commun. 2010, 46, 4809–4811. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Xiong, J.; Cheng, B.; Yu, Y.; Wang, J. Hydrothermal preparation and visible-light photocatalytic activity of Bi2WO6 powders. J. Solid State Chem. 2005, 178, 1968–1972. [Google Scholar] [CrossRef]
- Zhang, C.; Zhu, Y.F. Synthesis of square Bi2WO6 nanoplates as high-activity visible light-driven photocatalysts. Chem. Mater. 2005, 17, 3537–3545. [Google Scholar] [CrossRef]
- Leary, R.; Westwood, A. Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis. Carbon 2011, 49, 741–772. [Google Scholar] [CrossRef]
- Ania, C.O.; Velasco, L.F.; Valdes-Solis, T. Photochemical Response of Carbon Materials. In Novel Carbon Adsorbents; Elsevier: London, UK, 2012; pp. 521–547. ISBN 9780080977447. [Google Scholar]
- Han, C.; Zhang, N.; Xu, Y.-J. Structural diversity of graphene materials and their multivarious roles in heterogeneous photocatalysis. Nano Today 2016, 11, 351–372. [Google Scholar] [CrossRef]
- Lu, K.-Q.; Xin, X.; Zhang, N.; Tang, Z.-R.; Xu, Y.-J. Photoredox catalysis over graphene aerogel-supported composites. J. Mater. Chem. A 2018, 6, 4590–4604. [Google Scholar] [CrossRef]
- Matos, J.M.; Laine, J.; Herrmann, J.-M. Synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon. Appl. Catal. B Environ. 1998, 18, 281–291. [Google Scholar] [CrossRef]
- Wang, X.; Hu, Z.; Chen, Y.; Zhao, G.; Liu, Y.; Wen, Z. A novel approach towards high-performance composite photocatalyst of TiO2 deposited on activated carbon. Appl. Surf. Sci. 2009, 255, 3953–3958. [Google Scholar] [CrossRef]
- Murcia-López, S.; Navío, J.A.; Hidalgo, M.C. Role of activated carbon on the increased photocatalytic activity of AC/Bi2WO6 coupled materials. Appl. Catal. A 2013, 466, 51–59. [Google Scholar] [CrossRef]
- Li, Y.; Liu, J.; Huang, X.; Yu, J. Carbon-modified Bi2WO6 nanostructures with improved photocatalytic activity under visible light. Dalton Trans. 2010, 39, 3420–3424. [Google Scholar] [CrossRef]
- Cui, Y.; Li, H.; Hong, W.; Fan, S.; Zhu, L. The effect of carbon content on the structure and photocatalytic activity of nano-Bi2WO6 powder. Powder Technol. 2013, 247, 151–160. [Google Scholar] [CrossRef]
- Qian, X.; Yue, D.; Tian, Z.; Reng, M.; Zhu, Y.; Kan, M.; Zhang, T.; Zhao, Y. Carbon quantum dots decorated Bi2WO6 nanocomposite with enhanced photocatalytic oxidation activity for VOCs. Appl. Catal. B Environ. 2016, 193, 16–21. [Google Scholar] [CrossRef]
- Carmona, R.J.; Velasco, L.F.; Hidalgo, M.C.; Navío, J.A.; Ania, C.O. Boosting the visible-light photoactivity of Bi2WO6 using acidic carbon additives. Appl. Catal. A 2015, 505, 467–477. [Google Scholar] [CrossRef]
- Mchedlov-Petrossyan, N.O.; Vodolazkaya, N.A.; Doroshenko, A.O. Ionic Equilibria of Fluorophores in Organized Solutions: The Influence of Micellar Microenvironment on Protolytic and Photophysical Properties of Rhodamine B. J. Fluoresc. 2003, 13, 235–248. [Google Scholar] [CrossRef]
- Velasco, L.F.; Maurino, V.; Laurenti, E.; Ania, C.O. Light-induced generation of radicals on semiconductor-free carbon photocatalysts. Appl. Catal. A Gen. 2013, 453, 310–315. [Google Scholar] [CrossRef] [Green Version]
- Rouquerol, J.; Rouquerol, F.; Llewellyn, P.; Maurin, G.; Sing, K.S.W. Adsorption by Powders and Porous Solids. Principles, Methodology and Applications, 2nd ed.; Academic Press: London, UK, 2014; ISBN 9780080970356. [Google Scholar]
- Hayward, D.O.; Trapnell, B.M.W. Chemisorption, 2nd ed.; Buttherworths: London, UK, 1964; ISBN 9780444421784. [Google Scholar]
- Finkelstein, E.; Rosen, G.M.; Rauckman, E.J. Spin trapping of superoxide and hydroxyl radical: Practical aspects. J. Arch. Biochem. Biophys. 1980, 200, 1–16. [Google Scholar] [CrossRef]
- Velasco, L.F.; Maurino, V.; Laurenti, E.; Fonseca, I.M.; Lima, J.C.; Ania, C.O. Photoinduced reactions occurring on activated carbons. A combined photooxidation and ESR study. Appl. Catal. A 2013, 452, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Amano, F.; Nogami, K.; Abe, R.; Ohtani, B. Preparation and charaterization of bismuth tungstate polycrystalline flake-bal particles for photocatalytic reactions. J. Phys. Chem. C 2008, 112, 9320–9326. [Google Scholar] [CrossRef]
- Malligavathy, M.; Pathinettam Padiyan, D. Role of pH in the hydrothermal synthesis of phase pure alpha Bi2O3 nanoparticles and its structural characterization. Adv. Mat. Proc. 2017, 2, 51–55. [Google Scholar] [CrossRef]
- Gotić, M.; Popović, S.; Musić, S. Influence of synthesis procedure on the morphology of bismuth oxide particles. Materials Lett. 2007, 61, 709–714. [Google Scholar] [CrossRef]
- Ng, C.; Iwase, A.; Ng, Y.H.; Amal, R. Transforming anodized WO3 films into visible-light-active Bi2WO6 photoelectrodes by hydrothermal treatment. J. Phys. Chem. Lett. 2012, 3, 913–918. [Google Scholar] [CrossRef] [PubMed]
- Matos, J.; García, A.; Zhao, L.; Titirici, M.M. Solvothermal carbon-doped TiO2 photocatalyst for the enhanced methylene blue degradation under visible light. Appl. Catal. A Gen. 2010, 390, 175–182. [Google Scholar] [CrossRef]
- Araña, J.; Doña-Rodríguez, J.M.; Tello Rendón, E.; Garriga i Cabo, C.; González-Díaz, O.; Herrera-Melián, J.A.; Pérez-Peña, J.; Colón, G.; Navío, J.A. TiO2 activation by using activated carbon as a support. Part, I. Surface characterisation and decantability study. Appl. Catal. B Environ. 2003, 44, 161–172. [Google Scholar] [CrossRef]
- Hajra, P.; Shyamal, S.; Bera, A.; Mandal, H.; Sariket, D.; Kundu, M.; Pande, S.; Bhattacharya, C. Optimization of Triton-X 100 surfactant in the development of bismuth oxide thin film semiconductor for improved photoelectrochemical water oxidation behavior. Electrochimica Acta 2015, 185, 229–235. [Google Scholar] [CrossRef]
- Iljinas, A.; Marcinauskas, L. Formation of bismuth oxide nanostructures by reactive plasma assisted thermal evaporation. Thin Solid Films 2015, 594, 192–196. [Google Scholar] [CrossRef]
- Merka, O.; Yarovyi, V.; Bahnemann, D.W.; Wark, M. pH-control of the photocatalytic degradation mechanism of rhodamine B over Pb3Nb4O13. J. Phys. Chem. C 2011, 115, 8014–8023. [Google Scholar] [CrossRef]
- Yu, K.; Yang, S.; He, H.; Sun, C.; Gu, C.; Ju, Y. Visible light-driven photocatalytic degradation of rhodamine B over NaBiO3: Pathways and mechanism. J. Phys. Chem. A 2009, 113, 10024–10032. [Google Scholar] [CrossRef]
- Galoppini, E. Linkers for anchoring sensitizers to semiconductor nanoparticles. Coord. Chem. Rev. 2004, 248, 1283–1297. [Google Scholar] [CrossRef]
- Wang, W.D.; Serp, P.; Kalck, P.; Faria, J.L. Visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a modified sol-gel method. J. Mol. Catal. A Chem. 2005, 235, 194–199. [Google Scholar] [CrossRef]
- Fernández de Cordoba, M.; Matos, J.; Montaña, R.; Poon, P.S.; Lanfredi, S.; Praxedes, F.R.; Hernández-Garrido, J.C.; Calvino, J.J.; Rodríguez-Aguado, E.; Rodriguez-Castellón, E.; et al. Sunlight photoactivity of rice husks-derived biogenic silica. Catal. Today 2018. (accepted). [Google Scholar]
- Xu, Y.; Langford, C.H. UV- or Visible-Light-Induced Degradation of X3B on TiO2 Nanoparticles: The Influence of Adsorption. Langmuir 2001, 17, 897–902. [Google Scholar] [CrossRef]
Sample | SBET (m2/g) | VPORES* (cm3/g) | W0 (cm3/g) | Surface pH | Acid Sites (mmol/g) |
---|---|---|---|---|---|
BWO | 33 | 0.086 | 0.010 | 4.2 | 0.033 |
BWO/CS-2 | 41 | 0.106 | 0.013 | 4.6 | 0.079 |
BWO/CL-2 | 43 | 0.123 | 0.014 | 4.5 | 0.095 |
BWO/CB-2 | 41 | 0.100 | 0.011 | 4.8 | 0.036 |
BWO/CS-5 | 53 | 0.088 | 0.014 | 3.6 | 0.087 |
BWO/CL-5 | 46 | 0.106 | 0.016 | 3.5 | 0.211 |
BWO/CB-5 | 40 | 0.105 | 0.017 | 5.2 | - |
CS | 10 | 0.020 | 0.01 | 4.3 | 0.480 |
CL | 1280 | 1.060 | 0.31 | 3.6 | 0.406 |
CB | 1031 | 0.520 | 0.320 | 9.0 | 0.010 |
* evaluated at p/p0 ≈ 0.99 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomis-Berenguer, A.; Eliani, I.; F. Lourenço, V.; J. Carmona, R.; F. Velasco, L.; O. Ania, C. Insights on the Use of Carbon Additives as Promoters of the Visible-Light Photocatalytic Activity of Bi2WO6. Materials 2019, 12, 385. https://doi.org/10.3390/ma12030385
Gomis-Berenguer A, Eliani I, F. Lourenço V, J. Carmona R, F. Velasco L, O. Ania C. Insights on the Use of Carbon Additives as Promoters of the Visible-Light Photocatalytic Activity of Bi2WO6. Materials. 2019; 12(3):385. https://doi.org/10.3390/ma12030385
Chicago/Turabian StyleGomis-Berenguer, Alicia, Irma Eliani, Vânia F. Lourenço, Rocio J. Carmona, Leticia F. Velasco, and Conchi O. Ania. 2019. "Insights on the Use of Carbon Additives as Promoters of the Visible-Light Photocatalytic Activity of Bi2WO6" Materials 12, no. 3: 385. https://doi.org/10.3390/ma12030385
APA StyleGomis-Berenguer, A., Eliani, I., F. Lourenço, V., J. Carmona, R., F. Velasco, L., & O. Ania, C. (2019). Insights on the Use of Carbon Additives as Promoters of the Visible-Light Photocatalytic Activity of Bi2WO6. Materials, 12(3), 385. https://doi.org/10.3390/ma12030385