Total Performance of Magneto-Optical Ceramics with a Bixbyite Structure
Abstract
:1. Introduction
2. Experimental Procedures
3. Results
3.1. Synthesis and Characterization of the Novel Ceramic Faraday Rotator Material
3.2. Optical Properties of the Advanced Materials
4. Discussion
5. Conclusions
- (1)
- Optical-grade polycrystalline TYO ceramics with extremely low scattering were successfully produced for the first time.
- (2)
- The Verdet constants of the TYO ceramics increased with increasing Tb concentration in the Bixbyite structure, and Tb2O3 showed the highest value: 3.8 times higher than that of the commercially available TGG single crystal.
- (3)
- The Faraday rotation characteristics of the polycrystalline TYO ceramics were basically comparable to those of single-crystal isolator materials. In addition, one of the advantages was the possession of a large extinction ratio and a large Verdet constant, which can improve the performance of the isolator and downsize the device.
- (4)
- The laser damage threshold of the TYO ceramics was as high as 18 J/cm2 and they were resistant to pulsed laser damage (power density 78 MW/cm2 and no damage during a 7000-hour durability test at 2 MHz).
- (5)
- The thermal lens value, 1/f = 0.40 m−1, of the TYO ceramics was slightly larger than that of TGG, probably due to a remaining trace amount of Tb4+ ions in the material. One of the remaining issues is to be able to use it for high-power and continuous-wave laser applications.
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ikesue, A.; Kinoshita, T.; Kamata, K.; Yoshida, K. Fabrication and Optical Properties of High-Performance Polycrystalline Nd:YAG Ceramics for Solid-State Lasers. J. Am. Ceram. Soc. 1995, 78, 1033–1040. [Google Scholar] [CrossRef]
- Sanghera, J.; Kim, W.; Villalobos, G.; Shaw, B.; Backer, C.; Frantz, J.; Sadowski, B.; Aggarwal, I. Ceramic Laser Materials. Materials 2012, 5, 258–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, B.M.; Bhachu, B.S.; Cutter, K.P.; Fochs, S.N.; Letts, S.A.; Parks, C.W.; Rotter, M.D.; Soules, T.F. The Use of Large Transparent Ceramics in a High Powered, Diode Pumped Solid State Laser. In Proceedings of the Advanced Solid-State Photonics, Nara, Japan, 27–30 January 2008; p. WC5. [Google Scholar]
- Tokurakawa, M.; Takaichi, K.; Shirakawa, A.; Ueda, K.; Yagi, H.; Hosokawa, S.; Yanagitani, T.; Kaminskii, A.A. Diode-pumped mode-locked Yb3+:Lu2O3 Ceramic Laser. Opt. Express 2006, 14, 12832–12838. [Google Scholar] [CrossRef] [PubMed]
- Young, A.T. Rayleigh scattering. Appl. Opt. 1981, 20, 522–535. [Google Scholar] [CrossRef]
- Strutt, J. On the scattering of light by small particles. Philos. Mag. 1871, 41, 447–454. [Google Scholar] [CrossRef]
- Ikesue, A.; Aung, Y.; Taira, T.; Kamimura, T.; Yoshida, K.; Messing, G. Progress in Ceramics Lasers. Annu. Rev. Mater. Res. 2006, 36, 397–429. [Google Scholar] [CrossRef]
- Kong, L.B.; Huang, Y.; Que, W.; Zhang, T.; Li, S.; Zhang, J.; Dong, Z.; Tang, D. Transparent Ceramics. In Mining, Metallurgy and Material Engineering; Bergmann, C.P., Ed.; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Ikesue, A.; Aung, Y.L. Ceramic Laser Materials. Nat. Photonics 2008, 21, 721–726. [Google Scholar] [CrossRef]
- Tamaki, T.; Kaneda, H.; Kawamura, N. Magnet-optical properties of terbium bismuth iron oxide ((TbBi)3Fe5O12) and its application to a 1.5 μm wideband optical isolator. J. Appl. Phys. 1991, 70, 4581–4583. [Google Scholar] [CrossRef]
- Zhang, G.Y.; Xu, X.W.; Chong, T.C. Faraday rotation spectra of bismuth-substituted rare-earth iron garnet crystals in optical communication band. J. Appl. Phys. 2004, 95, 5267–5270. [Google Scholar] [CrossRef]
- Khazanov, E.; Andreev, N.; Palashov, O.; Poteomkin, A.; Sergeev, A.; Mehl, O.; Reitze, D.H. Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at High Average Power. Appl. Opt. 2002, 41, 483–492. [Google Scholar] [CrossRef]
- Barnes, N.P.; Petway, L.B. Variation of the Verdet constant with temperature of terbium gallium garnet. J. Opt. Soc. Am. B 1992, 9, 1912–1915. [Google Scholar] [CrossRef]
- Mironov, E.A.; Palashov, O.V.; Voitovich, A.V.; Karimov, D.N.; Ivanov, I.A. Investigation of Thermo-Optical Characteristics of Magneto-Active Crystal Na0.37Tb0.63F2.26. Opt. Lett. 2015, 40, 4919–4922. [Google Scholar] [CrossRef] [PubMed]
- Karimov, D.N.; Sobolev, B.P.; Ivanov, I.A.; Kanorsky, S.I.; Masalov, A.V. Growth and Magneto-Optical Properties of Na0.37Tb0.63F2.26 Cubic Single Crystal. Crystallogr. Rep. 2014, 59, 718–723. [Google Scholar] [CrossRef]
- Yasuhara, R.; Snetkov, I.; Starobor, A.; Mironov, E.; Palashov, O. Faraday rotator based on TSAG crystal with <001> orientation. Opt. Express 2016, 24, 15486–15493. [Google Scholar] [CrossRef]
- Adachi, G. Physics and Chemistry of Yttrium Compounds. Bull. Ceram. Soc. Jpn. 1988, 23, 430–437. [Google Scholar]
- Coutures, J.P.; Vegers, R.; Foex, M. Comparison of solidification temperatures of different rare earth sesquioxides; effect of atmosphere. Rev. Int. Hautes Temp. Refract. 1975, 12, 181–185. [Google Scholar]
- Aung, Y.L.; Ikesue, A. Development of optical grade (TbxY1−x)3Al5O12 ceramics as Faraday rotator material. J. Am. Ceram. Soc. 2017, 100, 4081–4087. [Google Scholar] [CrossRef]
- Stevens, K.T.; Schlichting, W.; Foundos, G.; Payne, A.; Rogers, E. Promising materials for high power laser isolators. Laser Tech. J. 2016, 3, 18–21. [Google Scholar] [CrossRef]
- Guo, F.; Sun, Y.; Yang, X.; Chen, X.; Zhao, B.; Zhuang, N.; Chen, J. Growth, Faraday and inverse Faraday characteristics of Tb2Ti2O7 crystal. Opt. Express 2016, 24, 5734–5743. [Google Scholar] [CrossRef]
- Yoshikawa, A.; Kagamitani, Y.; Pawlak, D.A.; Sto, H.; Machida, H.; Fukuda, T. Czochralski Growth of Tb3Sc2Al3O12 Single Crystal for Faraday Rotator. Mater. Res. Bull. 2002, 37, 1–10. [Google Scholar] [CrossRef]
- Geho, M.; Takagi, T.; Chiku, S.; Fujii, T. Development of Optical Isolators for visible light using Terbium Aluminum Garnet (Tb3Al5O12) Single Crystals. Jpn. J. Appl. Phys. 2005, 44, 4967–4970. [Google Scholar] [CrossRef]
- Ganschow, S.; Klimm, D.; Reiche, P.; Uecker, R. On the Crystallization of Terbium Aluminum Garnet. Cryst. Technol. 1999, 34, 615–619. [Google Scholar] [CrossRef]
- Yoshida, H.; Tsubakimoto, K.; Fujimoto, Y.; Mikami, K.; Fujita, H.; Miyanaga, N.; Nozawa, H.; Yagi, H.; Yanaggitani, T.; Nagaya, Y.; et al. Optical Properties and Faraday Effect of Ceramic Terbium Gallium Garnet for a Room Temperature Faraday Rotator. Opt. Express 2011, 19, 15181–15197. [Google Scholar] [CrossRef] [PubMed]
- Yasuhara, R.; Tokita, S.; Kawanaka, J.; Kawashima, T.; Kan, H.; Yagi, H.; Nozawa, H.; Yanagitani, T.; Fujimoto, Y.; Yoshida, H.; et al. Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics. Opt. Express 2007, 15, 11255–11261. [Google Scholar] [CrossRef] [PubMed]
- Yasuhara, R.; Snetkov, I.; Starobor, A.; Zheleznov, D.; Palashoz, O.; Khazanov, E.; Yanagitani, T. TGG Ceramics Faraday Rotator for High Power Laser Application. Opt. Lett. 2014, 39, 1145. [Google Scholar] [CrossRef] [PubMed]
- Zheleznov, D.; Atarobor, A.; Palashov, O.; Chen, C.; Zhou, S. High Power Faraday Isolators based on TAG Ceramics. Opt. Express 2014, 22, 2578–2583. [Google Scholar] [CrossRef] [PubMed]
- Zheleznov, D.; Atarobor, A.; Palashov, O.; Lin, H.; Zhou, S. Improving Characteristics of Faraday Isolator based on TAG Ceramics by Cerium Doping. Opt. Lett. 2014, 39, 2183–2186. [Google Scholar] [CrossRef]
- Makikawa, S.; Yahagi, A.; Ikesue, A. Transparent Ceramic, Method for Manufacturing Same, and Magneto-Optical Device. U.S. Patent 9,470,915, 10 October 2016. [Google Scholar]
- Veber, P.; Velazquez, M.; Gardet, G.; Rytz, D.; Peltz, M.; Decourt, R. Fluxgrowth at 1230 °C of Cubic Tb2O3 Single Crystals and Characterization of their Optical and Magnetic Properties. Cryst. Eng. Commun. 2015, 17, 492–497. [Google Scholar] [CrossRef]
- Snetkov, I.L.; Permin, D.A.; Balabanov, S.S.; Palashov, O.V. Wavelength Dependence of Verdet constant of Tb3+:Y2O3 Ceramics. J. Appl. Phys. Lett. 2016, 108, 161905. [Google Scholar] [CrossRef]
- Ikesue, A.; Aung, Y.L.; Makikawa, S.; Yahagi, A. Polycrystalline (TbxY1−x)2O3 Faraday Rotator. Opt. Lett. 2017, 42, 4399–4401. [Google Scholar] [CrossRef]
- Wang, L.; Huang, H.; Shen, D.; Zhang, J.; Chen, H.; Wang, Y.; Liu, X.; Tang, D. Room Temperature continuous-wave Laser Performance of LD pumped Er:Lu2O3 and Er:Y2O3 Ceramics at 2.7 μm. Opt. Exp. 2014, 22, 19495–19503. [Google Scholar] [CrossRef] [PubMed]
- Newburgh, G.A.; Word-Daniels, A.; Michael, A.; Merkle, L.D.; Dubinskii, A.I.M. Resonantly Diode-Pumped Ho3+:Y2O3 Ceramic 2.1 μm Laser. Opt. Express 2011, 19, 3604. [Google Scholar] [CrossRef] [PubMed]
- Kagamitani, Y.; Pawlak, D.A.; Sato, H.; Yoshikawa, A.; Martinek, J.; Machhida, H.; Fukuda, T. Dependence of Faraday Effect on the Orientation of Terbium- Scandium- Aluminum Garnet Single Crystal. J. Mater. Res. 2004, 19, 579–583. [Google Scholar] [CrossRef]
- Kohli, J.T. Volume 67 Ceramic Transaction. In Faraday Effect in Lanthanide-Doped Oxide Glasses; American Ceramic Society: Westerville, OH, USA, 1995; pp. 125–136. ISBN 1-57498-012-2. [Google Scholar]
- Stadler, B.J.H.; Vaccaro, K.; Davis, A.; Martin, E.A.; Lorenzo, J.P. Volume 60 Ceramic Transaction. In Characterization of Magneto-Optical Mn-Doped InGaAsP Thin Films on InP; American Ceramic Society: Westerville, OH, USA, 1995; pp. 195–204. ISBN 1-57498-003-3. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ikesue, A.; Aung, Y.L.; Makikawa, S.; Yahagi, A. Total Performance of Magneto-Optical Ceramics with a Bixbyite Structure. Materials 2019, 12, 421. https://doi.org/10.3390/ma12030421
Ikesue A, Aung YL, Makikawa S, Yahagi A. Total Performance of Magneto-Optical Ceramics with a Bixbyite Structure. Materials. 2019; 12(3):421. https://doi.org/10.3390/ma12030421
Chicago/Turabian StyleIkesue, Akio, Yan Lin Aung, Shinji Makikawa, and Akira Yahagi. 2019. "Total Performance of Magneto-Optical Ceramics with a Bixbyite Structure" Materials 12, no. 3: 421. https://doi.org/10.3390/ma12030421
APA StyleIkesue, A., Aung, Y. L., Makikawa, S., & Yahagi, A. (2019). Total Performance of Magneto-Optical Ceramics with a Bixbyite Structure. Materials, 12(3), 421. https://doi.org/10.3390/ma12030421