Experimental Investigation on Columns of Steel Fiber Reinforced Concrete with Recycled Aggregates under Large Eccentric Compression Load
Abstract
:1. Introduction
2. Experimental Program
2.1. Raw Materials
2.2. Preparation of SFRC-RA
2.3. Design of the SFRC-RA Columns
2.4. Test Method
3. Results and Discussion
3.1. Failure Process
3.2. Concrete Strain of the Mid-height Section
3.3. Strains of the Longitudinal Steel Bars
3.4. Mid-height Lateral Displacement vs. Load Curves
3.5. Ductility
4. Prediction of the Second-order Effect Factor due to Lateral Displacement
4.1. Second-Order Effect
4.2. Lateral Displacement and Flexural Stiffness
5. Prediction of Cracking
5.1. Cracking Resistance
5.2. Crack Width
5.2.1. Average Crack Spacing
5.2.2. Average Crack Width
5.2.3. Maximum Crack Width
6. Prediction of Bearing Capacity
7. Results and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, X.P. Recycling and reuse of waste concrete in China Part I. material behaviour of recycled aggregate concrete. Resour. Conserv. Recycl. 2008, 53, 36–44. [Google Scholar] [CrossRef]
- Xiao, J.Z.; Li, W.G.; Fan, Y.H.; Huang, X. An overview of study on recycled aggregate concrete in China (1996–2011). Constr. Build. Mater. 2012, 31, 364–383. [Google Scholar] [CrossRef]
- Wijayasundara, M.; Mendis, P.; Crawford, R.H. Integrated assessment of the use of recycled concrete aggregate replacing natural aggregate in structural concrete. J. Clean. Prod. 2017, 174, 591–604. [Google Scholar] [CrossRef]
- Nagataki, S.; Gokce, A.; Saeki, T.; Hisada, M. Assessment of recycling process induced damage sensitivity of recycled concrete aggregate. Cem. Concr. Res. 2004, 34, 965–971. [Google Scholar] [CrossRef]
- Tam, V.W.T.; Gao, X.F.; Tam, C.M. Microstructural analysis of recycled aggregate concrete produced from two-stage mixing approach. Cem. Concr. Res. 2005, 35, 1195–1203. [Google Scholar] [CrossRef] [Green Version]
- Ajdukiewicz, A.; Kliszczewicz, A. Influence of recycled aggregates on mechanical properties of HS/HPC. Cem. Concr. Compos. 2002, 24, 269–279. [Google Scholar] [CrossRef]
- Shima, H.; Tateyashiki, H.; Matsuhashi, R.; Yushida, Y. An advanced concrete recycling technology and its application assessment through input-output analysis. J. Adv. Concr. Technol. 2005, 3, 53–67. [Google Scholar] [CrossRef]
- Katz, A. Treatment for the improvement of recycled aggregate. J. Mater. Civ. Eng. 2004, 16, 597–603. [Google Scholar] [CrossRef]
- Qiu, J.; Tng, D.Q.S.; Yang, E.H. Surface treatment of recycled concrete aggregates through microbial carbonate precipitation. Constr. Build. Mater. 2014, 57, 144–150. [Google Scholar] [CrossRef]
- Cui, H.Z.; Shi, X.; Memon, S.A.; Xing, F.; Tang, W. Experimental study on the influence of water absorption of recycled coarse aggregates on properties of the resulting concretes. J. Mater. Civ. Eng. 2015, 27, 04014138(9). [Google Scholar] [CrossRef]
- Ismail, S.; Ramli, M. Mechanical strength and drying shrinkage properties of concrete containing treated coarse recycled concrete aggregates. Constr. Build. Mater. 2014, 68, 726–739. [Google Scholar] [CrossRef]
- Otsuki, N.; Miyazato, S.; Yodsudjai, W. Influence of recycled aggregate on interfacial transition zone, strength, chloride penetration and carbonation of concrete. J. Mater. Civ. Eng. 2003, 15, 443–451. [Google Scholar] [CrossRef]
- Corinaldesi, V.; Moriconi, G. Influence of mineral additions on the performance of 100% recycled aggregate concrete. Constr. Build. Mater. 2009, 23, 2869–2876. [Google Scholar] [CrossRef]
- Elhakam, A.A.; Mohamed, A.E.; Awad, E. Influence of self-healing, mixing method and adding silica fume on mechanical properties of recycled aggregates concrete. Constr. Build. Mater. 2012, 35, 421–427. [Google Scholar] [CrossRef]
- Brand, A.S.; Roesler, J.R.; Salas, A. Initial moisture and mixing effects on higher quality recycled coarse aggregate concrete. Constr. Build. Mater. 2012, 26, 565–573. [Google Scholar] [CrossRef]
- Liang, Y.C.; Ye, Z.M.; Vernerey, F.; Xi, Y.P. Development of processing methods to improve strength of concrete with 100% recycled coarse aggregate. J. Mater. Civ. Eng. 2015, 27, 04014163(9). [Google Scholar] [CrossRef]
- Li, J.; Xiao, H.; Zhou, Y. Influence of coating recycled aggregate surface with pozzolanic powder on properties of recycled aggregate concrete. Constr. Build. Mater. 2009, 23, 1287–1291. [Google Scholar] [CrossRef]
- Rahal, K. Mechanical properties of concrete with recycled coarse aggregate. Build. Environ. 2007, 42, 407–415. [Google Scholar] [CrossRef]
- Butler, L.; West, J.S.; Tighe, S.L. Effect of recycled concrete coarse aggregate from multiple sources on the hardened properties of concrete with equivalent compressive strength. Constr. Build. Mater. 2013, 47, 1292–1301. [Google Scholar] [CrossRef]
- Lotfi, S.; Eggimann, M.; Wagner, E.; Mroz, R.; Deja, J. Performance of recycled aggregate concrete based on a new concrete recycling technology. Constr. Build. Mater. 2015, 95, 243–256. [Google Scholar] [CrossRef]
- Zhao, S.B.; Guo, Q.; Li, G.; Su, Y.; Shao, W. Basic mechanical properties of concrete with machine-made sand and recycled coarse aggregate. Appl. Mech. Mater. 2013, 357–360, 1102–1105. [Google Scholar] [CrossRef]
- Li, C.Y.; Zhao, M.L.; Ren, F.; Liang, N.; Li, J.; Zhao, M.S. Bond Properties between full-recycled-aggregate concrete and deformed steel bar. Open Civ. Eng. J. 2017, 11, 685–698. [Google Scholar] [CrossRef]
- Li, F.L.; Li, J.; Chen, S.; Zhao, W.J. Experiment of basic mechanical properties of concrete mixed with composite aggregate. Adv. Mater. Res. 2011, 168-170, 2178–2181. [Google Scholar] [CrossRef]
- Li, X.K.; Guo, Q.; Zhao, S.B.; Li, G.X.; Su, Y.F. Mix design and experimental study of fully recycled aggregate concrete. J. North China Univ. Water Resour. Hydropower 2013, 34, 53–56. (In Chinese) [Google Scholar]
- Zhao, S.B.; Du, H.; Qian, X.J.; Li, C.Y. Study on direct design method of mix proportion of steel fiber reinforced high strength concrete. China Civ. Eng. J. 2008, 41, 1–6. (In Chinese) [Google Scholar]
- Ding, X.X.; Li, C.Y.; Han, B.; Lu, Y.; Zhao, S.B. Effects of different deformed steel-fibers on preparation and properties of self-compacting SFRC. Constr. Build. Mater. 2018, 168, 471–481. [Google Scholar] [CrossRef]
- Ministry of Housing and Urban-Rural Construction of the People’s Republic of China (MHURC-PRC). Code for Design of Concrete Structures; GB50010-2010; China Building Industry Press: Beijing, China, 2010. (In Chinese) [Google Scholar]
- Zhao, S.B. Design Principles of Concrete Structures, 2nd ed.; Tongji University Press: Beijing, China, 2013. (In Chinese) [Google Scholar]
- Xu, J.J.; Chen, Z.P.; Xue, J.Y.; Chen, Y.L.; Liu, Z.Q. A review of experimental results of steel reinforced recycled aggregate concrete members and structures in China (2010–2016). Procedia Eng. 2017, 210, 109–119. [Google Scholar] [CrossRef]
- Chen, Z.P.; Zheng, W.; Ye, P.H. Experimental study on mechanical behavior of reinforced recycled aggregate concrete columns under compression loading. In Proceedings of the 12th International Symposium on Structural Engineering, Wuhan, China, 12–15 October 2012; pp. 1395–1400. [Google Scholar]
- Zhou, J.H.; He, H.J.; Meng, X.H.; Huan, S. Experimental study of recycled concrete columns under large eccentric compression. In Proceedings of the 12th International Conference on Engineering, Science, Construction and Operations in Challenging Environments—Earth and Space 2010, Honolulu, HI, USA, 14–17 March 2010; pp. 531–538. [Google Scholar]
- Zhao, S.B.; Su, Y.F.; Li, C.Y.; He, W. Study on eccentric compressive bearing capacity of recycled coarse aggregate concrete reinforced columns with machine-made sand. Concrete 2013, 9, 26–28. (In Chinese) [Google Scholar]
- Li, F.L.; Ren, Z.C.; Su, Y.F.; Yang, Y.B. Calculation method of eccentric compressive bearing capacity of recycled coarse aggregate concrete reinforced columns with manufactured sand. J. North China Univ. Water Resour. Electr. Power 2015, 36, 39–43. (In Chinese) [Google Scholar]
- Li, F.L.; Shao, H.H.; Su, Y.F.; Yang, Y.B. Experimental study on large eccentric compressive crack control of recycled coarse aggregate concrete reinforced columns with manufactured sand. J. North China Univ. Water Resour. Electr. Power 2015, 36, 27–31. (In Chinese) [Google Scholar]
- Cheng, D.D.; Geng, H.B.; Li, Q.; Li, B.C.; Ma, K. Study on large eccentric compression resistance of steel fiber recycled concrete columns. Hans J. Civ. Eng. 2018, 7, 313–320. (In Chinese) [Google Scholar] [CrossRef]
- Ministry of Housing and Urban-Rural Construction of the People’s Republic of China (MHURC-PRC). Specification for Mix Proportion Design of Ordinary Concrete; JGJ 55-2011; China Building Industry Press: Beijing, China, 2011. (In Chinese) [Google Scholar]
- Ministry of Housing and Urban-Rural Construction of the People’s Republic of China (MHURC-PRC). Steel Fiber Reinforced Concrete; JG/T472-2015; China Standards Press: Beijing, China, 2015. (In Chinese) [Google Scholar]
- China Association for Engineering Construction Standardization. Technical Specification for Fiber Reinforced Concrete Structure; CECS 38:2004; China Planning Press: Beijing, China, 2004. (In Chinese) [Google Scholar]
- Ministry of Housing and Urban-Rural Construction of the People’s Republic of China (MHURC-PRC). Standard of Test Methods of Concrete Structures; GB/T50152-2012; China Building Industry Press: Beijing, China, 2012. (In Chinese) [Google Scholar]
- Li, F.L.; Huang, C.K.; Wen, S.C.; Qu, J.W. Experimental study on ductility of steel fiber reinforced high strength concrete columns under low cyclic loading. Eng. Mech. 2005, 6, 159–164. (In Chinese) [Google Scholar]
- Li, C.Y.; Ding, X.X.; Zhao, S.B.; Zhang, X.Y.; Li, X.K. Cracking resistance of reinforced SFRFLC superposed beams with partial ordinary concrete in compression zone. Open Civ. Eng. J. 2016, 10, 727–737. [Google Scholar] [CrossRef]
Properties | Coarse Aggregate | Fine Aggregate | |
---|---|---|---|
Natural | Recycled | ||
Apparent Density (kg/m3) | 2720 | 2690 | 2440 |
Bulk Density (kg/m3) | 1520 | 1350 | 1260 |
Compact Stacking Density (kg/m3) | 1670 | 1450 | 1470 |
Water Absorption at 24 Hours (%) | 0.9 | 5.9 | 8.5 |
Crush Index (%) | 14.1 | 10.0 | 14.1 |
Fineness Modulus | - | - | 3.22 |
Grade | Density (kg/m3) | Consistency | Setting Time (min) | Compressive Strength (MPa) | Flexural Strength (MPa) | |||
---|---|---|---|---|---|---|---|---|
Initial | Final | 3 d | 28d | 3 d | 28d | |||
42.5 | 3050 | 26.9 | 168 | 269 | 28.9 | 45.2 | 4.0 | 5.3 |
Mix ID | C30-1.2 | C40-1.2 | C40-1.6 | C40-2.0 | C50-1.2 |
---|---|---|---|---|---|
w/c | 0.48 | 0.41 | 0.41 | 0.41 | 0.35 |
Water | 180 | 180 | 180 | 180 | 180 |
Cement | 373.2 | 437.1 | 437.1 | 437.1 | 510 |
Recycled Fine Aggregate | 738.5 | 710 | 718.3 | 726.6 | 677.6 |
Recycled Coarse Aggregate | 555.4 | 531.8 | 519.8 | 507.8 | 505 |
Natural Coarse Aggregate | 370.2 | 354.5 | 346.5 | 338.6 | 336.6 |
Steel Fiber | 94.2 | 94.2 | 125.6 | 157 | 94.2 |
Additional Water | 66.3 | 63.6 | 63.7 | 63.8 | 60.6 |
Water-Reducer | 2.24 | 3.06 | 3.50 | 3.93 | 4.08 |
Slump (mm) | 150 | 150 | 140 | 130 | 150 |
Specimens ID | ƒfcu (MPa) | ƒfc (MPa) | ƒft (MPa) | Ec/104 MPa |
---|---|---|---|---|
C30-1.2A/B | 30.0 | 22.6 | 1.97 | 2.83 |
C40-1.2A/B | 38.3 | 28.8 | 2.13 | 2.98 |
C50-1.2A/B | 48.5 | 38.4 | 2.84 | 3.38 |
C40-1.6 | 40.4 | 31.2 | 2.25 | 3.05 |
C40-2.0 | 41.6 | 33.8 | 2.41 | 3.11 |
Specimens | C30-1.2A | C30-1.2B | C40-1.2A | C40-1.2B | C50-1.2A | C50-1.2B | C40-1.6 | C40-2.0 |
---|---|---|---|---|---|---|---|---|
μ | 1.70 | 1.66 | 1.58 | 1.63 | 1.52 | 1.54 | 1.77 | 1.82 |
Specimens | N/Nu | ηns | af (mm) | ||
---|---|---|---|---|---|
Test | Calculation | Test/Calculation | |||
C30-1.2A | 48% | 1.016 | 3.0 | 3.2 | 0.936 |
58% | 1.021 | 4.5 | 4.3 | 1.041 | |
71% | 1.027 | 5.8 | 5.3 | 1.078 | |
100% | 1.045 | 9.4 | 9.1 | 1.033 | |
C30-1.2B | 52% | 1.018 | 3.8 | 3.5 | 1.084 |
61% | 1.023 | 5.0 | 4.7 | 1.083 | |
70% | 1.029 | 6.4 | 5.8 | 1.105 | |
100% | 1.048 | 10.4 | 9.7 | 1.074 | |
C40-1.2A | 48% | 1.021 | 3.8 | 4.1 | 0.918 |
59% | 1.027 | 5.0 | 5.4 | 0.918 | |
69% | 1.033 | 6.3 | 6.7 | 0.941 | |
100% | 1.056 | 11.1 | 11.2 | 0.992 | |
C40-1.2B | 50% | 1.017 | 3.2 | 3.5 | 0.915 |
59% | 1.023 | 4.2 | 4.6 | 0.910 | |
71% | 1.029 | 5.6 | 5.8 | 0.970 | |
100% | 1.049 | 11.0 | 9.8 | 1.123 | |
C50-1.2A | 51% | 1.022 | 4.0 | 4.4 | 0.908 |
60% | 1.029 | 5.3 | 5.8 | 0.911 | |
70% | 1.036 | 6.8 | 7.3 | 0.935 | |
100% | 1.062 | 11.7 | 12.5 | 0.942 | |
C50-1.2B | 47% | 1.021 | 3.9 | 4.3 | 0.912 |
59% | 1.028 | 5.2 | 5.7 | 0.914 | |
71% | 1.036 | 6.5 | 7.1 | 0.911 | |
100% | 1.061 | 11.6 | 12.2 | 0.945 | |
C40-1.6 | 50% | 1.018 | 3.6 | 3.7 | 0.974 |
61% | 1.024 | 4.7 | 4.9 | 0.957 | |
69% | 1.030 | 6.1 | 6.1 | 0.993 | |
100% | 1.052 | 10.4 | 10.4 | 0.994 | |
C40-2.0 | 50% | 1.020 | 3.9 | 4.1 | 0.949 |
62% | 1.027 | 5.1 | 5.5 | 0.941 | |
70% | 1.034 | 6.5 | 6.8 | 0.949 | |
100% | 1.058 | 11.8 | 11.6 | 1.016 |
Specimens | C30-12A | C30-12B | C40-12A | C40-12B | C50-12A | C50-12B | C40-16 | C40-20 | |
---|---|---|---|---|---|---|---|---|---|
Ncr (kN) | Tested | 48.1 | 45.8 | 50.1 | 53.5 | 63.4 | 65.3 | 55.2 | 58.3 |
Calculated | 44.9 | 44.9 | 48.0 | 48.0 | 62.6 | 62.6 | 50.5 | 53.9 | |
Tested/Calculated | 1.071 | 1.021 | 1.043 | 1.113 | 1.012 | 1.042 | 1.092 | 1.081 |
Specimens | C30-12A | C30-12B | C40-12A | C40-12B | C50-12A | C50-12B | C40-1.6 | C40-2.0 | |
---|---|---|---|---|---|---|---|---|---|
lm (mm) | Tested | 123 | 121 | 121 | 125 | 124 | 121 | 119 | 117 |
Calculated | 120 | 120 | 120 | 120 | 120 | 120 | 117 | 114 | |
Tested/Calculated | 1.028 | 1.012 | 1.014 | 1.047 | 1.033 | 1.013 | 1.020 | 1.023 |
Specimens | N/Nu | wm (mm) | wmax (mm) | ||||
---|---|---|---|---|---|---|---|
Calculated | Tested | Tested/Calculated | Calculated | Tested | Tested/Calculated | ||
C30-1.2A | 48% | 0.06 | 0.07 | 1.109 | 0.10 | 0.12 | 1.233 |
58% | 0.08 | 0.08 | 1.030 | 0.13 | 0.15 | 1.163 | |
71% | 0.10 | 0.10 | 1.034 | 0.16 | 0.20 | 1.245 | |
C30-1.2B | 52% | 0.06 | 0.06 | 0.950 | 0.10 | 0.13 | 1.239 |
61% | 0.08 | 0.08 | 0.963 | 0.14 | 0.16 | 1.160 | |
70% | 0.10 | 0.10 | 0.972 | 0.17 | 0.19 | 1.112 | |
C40-1.2A | 48% | 0.07 | 0.07 | 0.946 | 0.12 | 0.13 | 1.059 |
59% | 0.10 | 0.09 | 0.931 | 0.16 | 0.16 | 0.997 | |
69% | 0.12 | 0.12 | 1.006 | 0.20 | 0.18 | 0.909 | |
C40-1.2B | 50% | 0.06 | 0.06 | 0.927 | 0.11 | 0.07 | 0.652 |
59% | 0.09 | 0.08 | 0.933 | 0.14 | 0.12 | 0.843 | |
71% | 0.11 | 0.10 | 0.936 | 0.18 | 0.15 | 0.846 | |
C50-1.2A | 51% | 0.08 | 0.08 | 1.005 | 0.13 | 0.10 | 0.757 |
60% | 0.11 | 0.10 | 0.942 | 0.18 | 0.15 | 0.851 | |
70% | 0.13 | 0.13 | 0.979 | 0.22 | 0.19 | 0.862 | |
C50-1.2B | 47% | 0.08 | 0.07 | 0.918 | 0.13 | 0.11 | 0.869 |
59% | 0.10 | 0.10 | 0.981 | 0.17 | 0.15 | 0.886 | |
71% | 0.13 | 0.12 | 0.940 | 0.21 | 0.19 | 0.896 | |
C40-1.6 | 50% | 0.06 | 0.06 | 0.966 | 0.10 | 0.09 | 0.873 |
61% | 0.08 | 0.08 | 0.966 | 0.14 | 0.11 | 0.800 | |
69% | 0.10 | 0.10 | 0.966 | 0.17 | 0.14 | 0.815 | |
C40-2.0 | 50% | 0.07 | 0.07 | 0.989 | 0.11 | 0.11 | 1.008 |
62% | 0.09 | 0.08 | 0.914 | 0.15 | 0.14 | 0.963 | |
70% | 0.11 | 0.10 | 0.914 | 0.18 | 0.17 | 0.936 |
Specimens | C30-12A | C30-12B | C40-12A | C40-12B | C50-12A | C50-12B | C40-1.6 | C40-2.0 | |
---|---|---|---|---|---|---|---|---|---|
Nu (kN) | Tested | 311.1 | 329.2 | 374.5 | 337.2 | 431.3 | 425.5 | 360.1 | 402.1 |
Calculated | 356.7 | 356.7 | 386.3 | 386.3 | 424.1 | 424.1 | 398.4 | 411.2 | |
Tested/Calculated | 0.872 | 0.923 | 0.970 | 0.873 | 1.017 | 1.003 | 0.904 | 0.978 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Geng, H.; Deng, C.; Li, B.; Zhao, S. Experimental Investigation on Columns of Steel Fiber Reinforced Concrete with Recycled Aggregates under Large Eccentric Compression Load. Materials 2019, 12, 445. https://doi.org/10.3390/ma12030445
Li C, Geng H, Deng C, Li B, Zhao S. Experimental Investigation on Columns of Steel Fiber Reinforced Concrete with Recycled Aggregates under Large Eccentric Compression Load. Materials. 2019; 12(3):445. https://doi.org/10.3390/ma12030445
Chicago/Turabian StyleLi, Changyong, Haibin Geng, Caiheng Deng, Bingchen Li, and Shunbo Zhao. 2019. "Experimental Investigation on Columns of Steel Fiber Reinforced Concrete with Recycled Aggregates under Large Eccentric Compression Load" Materials 12, no. 3: 445. https://doi.org/10.3390/ma12030445
APA StyleLi, C., Geng, H., Deng, C., Li, B., & Zhao, S. (2019). Experimental Investigation on Columns of Steel Fiber Reinforced Concrete with Recycled Aggregates under Large Eccentric Compression Load. Materials, 12(3), 445. https://doi.org/10.3390/ma12030445