Photothermal-Triggered Shape Memory Polymer Prepared by Cross-Linking Porphyrin-Loaded Micellar Particles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis
2.3. Characterizations
3. Results and Discussion
3.1. Characterizations of MBDA copolymer
3.2. Characterizations of MBDA–TPP–NPs
3.3. Characterizations of MBDA–TPP–ADH films
3.4. Light-Actuated Shape Memory Effect
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Reyntjens, W.G.; Prez, F.E.D.; Goethals, E.J. Polymer networks containing crystallizable poly (octadecyl vinyl ether) segments for shape-memory materials. Macromol. Rapid Commun. 1999, 20, 251–255. [Google Scholar] [CrossRef]
- Ward, S.I.; Thomas, W.; Benett, W.; Loge, J.; Maitland, D. Laser-activated shape memory polymer intravascular thrombectomy device. Opt. Express 2005, 13, 8204–8213. [Google Scholar]
- Lendlein, A.; Jiang, H.; Jünger, O.; Langer, R. Light-induced shape-memory polymers. Nature 2005, 434, 879–882. [Google Scholar] [CrossRef] [PubMed]
- Leng, J.S.; Lan, X.; Liu, Y.J.; Du, S.Y.; Huang, W.M.; Liu, N.; Phee, S.J.; Yuan, Q. Electrical conductivity of thermoresponsive shape-memory polymer with embedded micron sized Ni powder chains. Appl. Phys. Lett. 2008, 92, 014104. [Google Scholar] [CrossRef]
- Leng, J.; Lv, H.; Liu, Y.; Du, S. Electroactivate shape-memory polymer filled with nanocarbon particles and short carbon fibers. Appl. Phys. Lett. 2007, 91, 144105. [Google Scholar] [CrossRef]
- Liu, Y.; Lv, H.; Lan, X.; Leng, J.; Du, S. Review of electro-active shape-memory polymer composite. Compos. Sci. Technol. 2009, 69, 2064–2068. [Google Scholar] [CrossRef]
- Schmidt, A.M. Electromagnetic activation of shape memory polymer networks containing magnetic nanoparticles. Macromol. Rapid Commun. 2010, 27, 1168–1172. [Google Scholar] [CrossRef]
- Mohr, R.; Kratz, K.; Weigel, T.; Lucka-Gabor, M.; Moneke, M.; Lendlein, A. Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers. Proc. Natl. Acad. Sci. USA 2006, 103, 3540–3545. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Huang, W.M.; Li, C.; Li, L. Effects of moisture on the thermomechanical properties of a polyurethane shape memory polymer. Polymer 2006, 47, 1348–1356. [Google Scholar] [CrossRef]
- Lv, H.; Leng, J.; Liu, Y.; Du, S. Shape-memory polymer in response to solution. Adv. Eng. Mater. 2008, 10, 592–595. [Google Scholar] [CrossRef]
- Koerner, H.; Price, G.; Pearce, N.A.; Alexander, M.; Vaia, R.A. Remotely actuated polymer nanocomposites-stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nat. Mater. 2004, 3, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Huang, W.M.; Li, C.; Lee, C.; Li, L. On the effects of moisture in a polyurethane shape memory polymer. Smart Mater. Struct. 2004, 13, 191–195. [Google Scholar] [CrossRef]
- Huang, W.; Yang, B.; An, L.; Li, C.; Chan, Y.S. Water-driven programmable polyurethane shape memory polymer: Demonstration and mechanism. Appl. Phys. Lett. 2005, 86, 114105. [Google Scholar] [CrossRef]
- Huang, W.; Yang, B.; Li, C.; Chan, Y.; An, L. Response to “comment on ‘water-driven programmable polyurethane shape memory polymer: demonstration and mechanism’”. Appl. Phys. Lett. 2010, 97, 056101. [Google Scholar] [CrossRef]
- Jiang, H.Y.; Kelch, S.; Lendlein, A. Polymers move in response to light. Adv. Mater. 2006, 18, 1471–1475. [Google Scholar] [CrossRef]
- Wu, L.; Jin, C.; Sun, X. Synthesis, properties, and light-induced shape memory effect of multiblock polyesterurethanes containing biodegradable segments and pendant cinnamamide groups. Biomacromolecules 2011, 12, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, T.; Nakano, M.; Yu, Y.L.; Tsutsumi, O.; Kanazawa, A. Anisotropic bending and unbending behavior of azobenzene liquid-crystalline gels by light exposure. Adv. Mater. 2003, 15, 201–205. [Google Scholar] [CrossRef]
- Lee, K.M.; Koerner, H.; Vaia, R.A.; Bunning, T.J.; White, T.J. Light-activated shape memory of glassy, azobenzene liquid crystalline polymer networks. Soft Matter 2011, 7, 4318–4324. [Google Scholar] [CrossRef]
- Zhang, H.; Xia, H.; Zhao, Y. Optically triggered and spatially controllable shape-memory polymer–gold nanoparticle composite materials. J. Mater. Chem. 2011, 22, 845–849. [Google Scholar] [CrossRef]
- Hribar, K.C.; Metter, R.B.; Ifkovits, J.L.; Troxler, T.; Burdick, J.A. Light-induced temperature transitions in biodegradable polymer and nanorod composites. Small 2009, 5, 1830–1834. [Google Scholar] [CrossRef]
- Kohlmeyer, R.R.; Lor, M.; Chen, J. Remote, local, and chemical programming of healable multishape memory polymer nanocomposites. Nano Lett. 2012, 12, 2757–2762. [Google Scholar] [CrossRef]
- Liang, J.; Xu, Y.; Huang, Y.; Zhang, L.; Wang, Y.; Ma, Y.; Li, F.; Guo, T.; Chen, Y. Infrared-triggered actuators from graphene-based nanocomposites. J. Phys. Chem. C 2009, 113, 9921–9927. [Google Scholar] [CrossRef]
- Huang, X.; El-Sayed, M.A. Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J. Adv. Res. 2010, 1, 13–28. [Google Scholar] [CrossRef]
- Huang, X.; Jain, P.K.; El-Sayed, I.H.; El-Sayed, M.A. Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine 2007, 2, 681–693. [Google Scholar] [CrossRef] [PubMed]
- Dickerson, E.B.; Dreaden, E.C.; Huang, X.; El-Sayed, I.H.; Chu, H.; Pushpanketh, S.; McDonald, J.F.; El-Sayed, M.A. Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett. 2008, 269, 57–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lovell, J.F.; Jin, C.S.; Huynh, E.; MacDonald, T.D.; Cao, W.; Zheng, G. Enzymatic regioselection for the synthesis and biodegradation of porphysome nanovesicles. Angew. Chem. Int. Ed. Engl. 2012, 51, 2429–2433. [Google Scholar] [CrossRef] [PubMed]
- Zou, Q.; Abbas, M.; Zhao, L.; Li, S.; Shen, G.; Yan, X. Biological photothermal nanodots based on self-assembly of peptide-porphyrin conjugates for antitumor therapy. J. Am. Chem. Soc. 2017, 139, 1921–1927. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, F. Amphiphilic acrylamide-based copolymer with porphyrin pendants for the highly selective detection of hg2+ in aqueous solutions. Polymer 2015, 56, 223–228. [Google Scholar] [CrossRef]
- Sun, Y.K.; Zhang, Y.; Zhao, S.X.; Jiang, J.; Xie, M.; Wang, X.R.; Zhou, S.J. Research progress of organic solar cells based on porphyrin dyes. J. Liaoning Shihua Univ. 2017, 37, 6–12. [Google Scholar]
- Zhang, H.; Zhao, Y. Polymers with dual light-triggered functions of shape memory and healing using gold nanoparticles. ACS Appl. Mater. Interfaces 2013, 5, 13069–13075. [Google Scholar] [CrossRef]
Micelle | m/g | THF/mL | H2O/mL | TPP/mg | Method |
---|---|---|---|---|---|
MBDA-TPP 0-NPs | 1.6858 | 8 | 8 | 0 | The system was adjusted to be weakly alkaline, and THF was volatilized under constant temperature and constant pressure to prepare micellar emulsion |
MBDA-TPP 0.5-NPs | 1.6858 | 8 | 8 | 0.5 | |
MBDA-TPP 1.5-NPs | 1.6858 | 8 | 8 | 1.5 | |
MBDA-TPP 5-NPs | 1.6858 | 8 | 8 | 5 |
Polymer Structure | Resonance Type | Chemical Shift, δ(ppm) |
---|---|---|
PMMA | -CH3 | <1.00 |
-CH2-* | 1.61 | |
-OCH3 | 3.61 | |
PBA | -CH2-* | 1.80 |
-OCH2CH2CH2CH3 a b c d | 4.00(a), 1.40(b), 1.27(c), <1.00(d) | |
-CH-* | 2.2–2.5 | |
PAA | -OH | Absent |
-CH2-* | 2.14 | |
-CH-* | 2.2–2.5 | |
PDAAM | -NC(CH3)2- | 1.15 |
-CO-CH3 | 2.14 | |
-NH- | 6.99 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, W.; Song, Y.; Shi, D.; Dong, W.; Wang, X.; Zhang, H. Photothermal-Triggered Shape Memory Polymer Prepared by Cross-Linking Porphyrin-Loaded Micellar Particles. Materials 2019, 12, 496. https://doi.org/10.3390/ma12030496
Qian W, Song Y, Shi D, Dong W, Wang X, Zhang H. Photothermal-Triggered Shape Memory Polymer Prepared by Cross-Linking Porphyrin-Loaded Micellar Particles. Materials. 2019; 12(3):496. https://doi.org/10.3390/ma12030496
Chicago/Turabian StyleQian, Wangqiu, Yufang Song, Dongjian Shi, Weifu Dong, Xiaorong Wang, and Hongji Zhang. 2019. "Photothermal-Triggered Shape Memory Polymer Prepared by Cross-Linking Porphyrin-Loaded Micellar Particles" Materials 12, no. 3: 496. https://doi.org/10.3390/ma12030496
APA StyleQian, W., Song, Y., Shi, D., Dong, W., Wang, X., & Zhang, H. (2019). Photothermal-Triggered Shape Memory Polymer Prepared by Cross-Linking Porphyrin-Loaded Micellar Particles. Materials, 12(3), 496. https://doi.org/10.3390/ma12030496