The Comparison in the Microstructure and Mechanical Properties between AZ91 Alloy and Nano-SiCp/AZ91 Composite Processed by Multi-Pass Forging Under Varying Passes and Temperatures
Abstract
:1. Introduction
2. Material and Methods
2.1. Sample Processing
2.2. Processing of the Samples by Multi-Pass Forging
2.3. Study of the Phase Composition and the Microstructure
2.4. Tensile Test
3. Results and Discussion
3.1. Microstructure after Multi-Pass Forging with Decreasing Temperatures
3.2. Tensile Properties after Multi-Pass Forging with Decreasing Temperatures
3.3. Affecting Factors for the Strength-Toughness Properties of the Nano-SiCp/AZ91 Composites
3.3.1. Effect of Grain Size on the Strength-Toughness Properties
3.3.2. Effect of Texture on the Strength-Toughness Properties
3.3.3. Effect of Precipitated Second Phase on the Strength-Toughness Properties
3.3.4. Effect of Nanoparticle Distribution on the Strength-Toughness Properties
4. Conclusions
- (1)
- Complete recrystallization occurs in both the AZ91 alloy and composite after six passes of multi-pass forging at a constant temperature of 400 °C. Further refinement of dynamic recrystallized grains and dynamic precipitates exist as the temperature decreases and pass increases.
- (2)
- Under the same multi-pass forging condition, the grain size of the nano-SiCp/AZ91 composite is smaller than that of the AZ91 alloy, which can be attributed to the pinning effect of SiC nanoparticles on the grain boundaries.
- (3)
- The texture intensity for the 12 passes of multi-pass forging with varying temperatures is increased compared with that after 9 passes. In contrast, there is no significant difference in the average values for schmid factors between the nano-SiCp/AZ91 composites after multi-pass forging for nine passes and for 12 passes.
- (4)
- Due to the Orowan strengthening effect and grain refinement strengthening resulting from externally applied SiC nanoparticles and internally precipitated second phases, the yield strength of the composite is higher than that of the AZ91 alloy under the same conditon of multi-pass forging.
- (5)
- The strength-toughness properties of the nano-SiCp/AZ91 composites are related to matrix grain size, texture evolution, SiC nanoparticles distribution and the precipitated second phases based on the comparison between the AZ91 alloy and the composite.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mordike, B.L.; Ebert, T. Magnesium- Properties-applications-potential. Mater. Sci. Eng. A 2001, 302, 37–45. [Google Scholar] [CrossRef]
- Lü, Y.; Wang, Q.; Zeng, X.; Ding, W.; Zhai, C.; Zhu, Y. Effects of rare earths on the microstructure, properties and fracture behavior of Mg-Al alloys. Mater. Sci. Eng. A 2000, 278, 66–76. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, Z.X.; Pan, F.; Li, Z.; Luo, X. Effect of composition on the microstructure and mechanical properties of Mg-Zn-Al alloys. Mater. Sci. Eng. A 2007, 456, 43–51. [Google Scholar] [CrossRef]
- Wang, X.J.; Xu, D.K.; Wu, R.Z.; Chen, X.B.; Peng, Q.M.; Jin, L.; Xin, Y.C.; Zhang, Z.Q.; Liu, Y.; Chen, X.H.; et al. What is going on in magnesium alloys? J. Mater. Sci. Technol. 2018, 34, 245–247. [Google Scholar] [CrossRef]
- Agnew, S.R.; Duygulu, Ö. Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B. Int. J. Plasticity 2005, 21, 1161–1193. [Google Scholar] [CrossRef]
- Jiang, Q.C.; Wang, H.Y.; Ma, B.X.; Wang, Y.; Zhao, F. Fabrication of B4C particulate reinforced magnesium matrix composite by powder metallurgy. J. Alloys Compd. 2005, 386, 177–181. [Google Scholar] [CrossRef]
- Poddar, P.; Srivastava, V.C.; De, P.K.; Sahoo, K.L. Processing and mechanical properties of SiC reinforced cast magnesium matrix composites by stir casting process. Mater. Sci. Eng. A 2007, 460–461, 357–364. [Google Scholar] [CrossRef]
- Deng, K.; Shi, J.; Wang, C.; Wang, X.; Wu, Y.; Nie, K.; Wu, K. Microstructure and strengthening mechanism of bimodal size particle reinforced magnesium matrix composite. Compos. Part A 2012, 43, 1280–1284. [Google Scholar] [CrossRef]
- Huang, L.J.; Geng, L.; Peng, H.X. Microstructurally inhomogeneous composites: Is a homogeneous reinforcement distribution optimal? Prog. Mater. Sci. 2015, 71, 93–168. [Google Scholar] [CrossRef]
- Deng, K.K.; Wu, K.; Wu, Y.W.; Nie, K.B.; Zheng, M.Y. Effect of submicron size SiC particulates on microstructure and mechanical properties of AZ91 magnesium matrix composites. J. Alloys Compd. 2010, 504, 542–547. [Google Scholar] [CrossRef]
- Nie, K.; Guo, Y.; Deng, K.; Wang, X.; Wu, K. Development of SiC nanoparticles and second phases synergistically reinforced Mg-based composites processed by multi-pass forging with varying temperatures. Materials 2018, 11, 126. [Google Scholar] [CrossRef]
- Wang, X.J.; Wu, K.; Zhang, H.F.; Huang, W.X.; Chang, H.; Gan, W.M.; Zheng, M.Y.; Peng, D.L. Effect of hot extrusion on the microstructure of a particulate reinforced magnesium matrix composite. Mater. Sci. Eng. A 2007, 465, 78–84. [Google Scholar] [CrossRef]
- Gupta, M.; Wong, W.L.E. Magnesium-based nanocomposites: Lightweight materials of the future. Mater. Charact. 2015, 105, 30–46. [Google Scholar] [CrossRef]
- Liao, W.; Ye, B.; Zhang, L.; Zhou, H.; Guo, W.; Wang, Q.; Li, W. Microstructure evolution and mechanical properties of SiC nanoparticles reinforced magnesium matrix composite processed by cyclic closed-die forging. Mater. Sci. Eng. A 2015, 642, 49–56. [Google Scholar] [CrossRef]
- Chen, L.; Xu, J.; Choi, H.; Pozuelo, M.; Ma, X.; Bhowmick, S.; Yang, J.; Mathaudhu, S.; Li, X. Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles. Nature 2015, 528, 539–543. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Luo, X.; Liu, J.; Leng, Y.; An, L. Dry sliding wear behavior of Mg-SiC nanocomposites with high volume fractions of reinforcement. Mater. Lett. 2018, 228, 112–115. [Google Scholar] [CrossRef]
- Nie, K.B.; Wang, X.J.; Wu, K.; Xu, L.; Zheng, M.Y.; Hu, X.S. Processing, microstructure and mechanical properties of magnesium matrix nanocomposites fabricated by semisolid stirring assisted ultrasonic vibration. J. Alloys Compd. 2011, 509, 8664–8669. [Google Scholar] [CrossRef]
- Liu, W.Q.; Hu, X.S.; Wang, X.J.; Wu, K.; Zheng, M.Y. Evolution of microstructure, texture and mechanical properties of SiC/AZ31 nanocomposite during hot rolling process. Mater. Des. 2016, 93, 194–202. [Google Scholar] [CrossRef]
- Choi, H.; Alba-Baena, N.; Nimityongskul, S.; Jones, M.; Wood, T.; Sahoo, M.; Lakes, R.; Kou, S.; Li, X. Characterization of hot extruded Mg/SiC nanocomposites fabricated by casting. J. Mater. Sci. 2011, 46, 2991–2997. [Google Scholar] [CrossRef]
- Nie, K.B.; Wang, X.J.; Xu, L.; Wu, K.; Hu, X.S.; Zheng, M.Y. Effect of hot extrusion on microstructures and mechanical properties of SiC nanoparticles reinforced magnesium matrix composite. J. Alloys Compd. 2012, 512, 355–360. [Google Scholar] [CrossRef]
- Valiev, R.Z.; Estrin, Y.; Horita, Z.; Langdon, T.G.; Zehetbauer, M.J.; Zhu, Y.T. Producing bulk ultrafine-grained materials by severe plastic deformation: Ten years later. JOM 2016, 68, 1216–1226. [Google Scholar] [CrossRef]
- Figueiredo, R.B.; Langdon, T.G. Principles of grain refinement in magnesium alloys processed by equal-channel angular pressing. J. Mater. Sci. 2009, 44, 4758–4762. [Google Scholar] [CrossRef]
- Tang, L.; Liu, C.; Chen, Z.; Ji, D.; Xiao, H. Microstructures and tensile properties of Mg-Gd-Y-Zr alloy during multidirectional forging at 773K. Mater. Des. 2013, 50, 587–596. [Google Scholar] [CrossRef]
- Yang, X.; Okabe, Y.; Miura, H.; Sakai, T. Effect of pass strain and temperature on recrystallisation in magnesium alloy AZ31 after interrupted cold deformation. J. Mater. Sci. 2012, 47, 2823–2830. [Google Scholar] [CrossRef]
- Jiang, M.G.; Yan, H.; Chen, R.S. Twinning recrystallization and texture development during multi-directional impact forging in an AZ61 Mg alloy. J. Alloys Compd. 2015, 650, 399–409. [Google Scholar] [CrossRef]
- Fuloria, D.; Nageswararao, P.; Jayaganthana, R.; Jha, S.; Srivastava, D. An investigation of deformed microstructure and mechanical properties of Zircaloy-4 processed through multiaxial forging. Mater. Chem. Phys. 2016, 173, 12–25. [Google Scholar] [CrossRef]
- Li, J.; Liu, J.; Cui, Z. Microstructures and mechanical properties of AZ61 magnesium alloy after isothermal multidirectional forging with increasing strain rate. Mater. Sci. Eng. A 2015, 643, 32–36. [Google Scholar] [CrossRef]
- Guo, W.; Wang, Q.; Li, W.; Zhou, H.; Zhang, L.; Liao, W. Enhanced microstructure homogeneity and mechanical properties of AZ91–SiC nanocomposites by cyclic closed-die forging. J. Mater. Compos. 2017, 51, 681–686. [Google Scholar] [CrossRef]
- Xia, X.; Chen, Q.; Zhao, Z.; Ma, M.; Li, X.; Zhang, K. Microstructure, texture and mechanical properties of coarse-grained Mg-Gd-Y-Nd-Zr alloy processed by multidirectional forging. J. Alloys Compd. 2015, 623, 62–68. [Google Scholar] [CrossRef]
- Khoshzaban Khosroshahi, H.; Fereshteh Saniee, F.; Abedi, H.R. Mechanical properties improvement of cast AZ80 Mg alloy/nano-particles composite via thermomechanical processing. Mater. Sci. Eng. A 2014, 595, 284–290. [Google Scholar] [CrossRef]
- Chen, Q.; Meng, Y.; Yi, Y.; Wan, Y.; Sugiyama, S.; Yanagimoto, J. Microstructure and mechanical properties of cup-shaped parts of 15% SiCp reinforced AZ91 magnesium matrix composite processed by thixoforging. J. Alloys Compd. 2019, 774, 93–110. [Google Scholar] [CrossRef]
- Yi, Y.; Li, R.; Xie, Z.; Meng, Y.; Sugiyama, S. Effects of reheating temperature and isothermal holding time on the morphology and thixo-formability of SiC particles reinforced AZ91 magnesium matrix composite. Vacuum 2018, 154, 177–185. [Google Scholar] [CrossRef]
- Nie, K.B.; Wang, X.J.; Deng, K.K.; Xu, F.J.; Wu, K.; Zheng, M.Y. Microstructures and mechanical properties of AZ91 magnesium alloy processed by multidirectional forging under decreasing temperature conditions. J. Alloys Compd. 2014, 617, 979–987. [Google Scholar] [CrossRef]
- Nie, K.B.; Wang, X.J.; Xu, F.J.; Wu, K.; Zheng, M.Y. Microstructure and tensile properties of SiC nanoparticles reinforced magnesium matrix composite prepared by multidirectional forging under decreasing temperature conditions. Mater. Sci. Eng. A 2015, 639, 465–473. [Google Scholar] [CrossRef]
- Chen, Q.; Shu, D.; Hua, C.K.; Zhao, Z.D.; Yuan, B.G. Grain refinement in an as-cast AZ61 magnesium alloy processed by multi-axial forging under the multitemperature processing procedure. Mater. Sci. Eng. A 2012, 541, 98–104. [Google Scholar] [CrossRef]
- Jin, L.; Lin, D.L.; Mao, D.L.; Zeng, X.Q.; Ding, W.J. Mechanical properties and microstructure of AZ31 Mg alloy processed by two-step equal channel angular extrusion. Mater. Lett. 2005, 59, 2267–2270. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, D.L. Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength. Scr. Mater. 2006, 54, 1321–1326. [Google Scholar] [CrossRef]
- Kim, W.J.; Hong, S.I.; Kim, Y.S.; Min, S.H.; Jeong, H.T.; Lee, J.D. Texture development and its effect on mechanical properties of an AZ61 Mg alloy fabricated by equal channel angular pressing. Acta Mater. 2003, 51, 3293–3307. [Google Scholar] [CrossRef]
- Apps, P.J.; Bowen, J.R.; Prangnell, P.B. The effect of coarse second-phase particles on the rate of grain refinement during severe deformation processing. Acta Mater. 2003, 51, 2811–2822. [Google Scholar] [CrossRef]
- Nie, J.F. Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys. Scr. Mater. 2003, 48, 1009–1015. [Google Scholar] [CrossRef]
- Shi, B.Q.; Chen, R.S.; Ke, W. Effects of forging processing on the texture and tensile properties of ECAEed AZ80 magnesium alloy. Mater. Sci. Eng. A 2012, 546, 323–327. [Google Scholar] [CrossRef]
- Braszczyńska-Malik, K.N. Spherical shape of γ-Mg17Al12 precipitates in AZ91 magnesium alloy processed by equal-channel angular pressing. J. Alloys Compd. 2009, 487, 263–268. [Google Scholar] [CrossRef]
- Doherty, R.D.; Hughes, D.A.; Humphreys, F.J.; Jonas, J.J.; Jensen, D.J.; Kassner, M.E.; King, W.E.; McNelley, T.R.; McQueen, H.J.; Rollett, A.D. Current issues in recrystallization: A review. Mater. Sci. Eng. A 1997, 238, 219–274. [Google Scholar] [CrossRef]
- Goh, C.S.; Wei, J.; Lee, L.C.; Gupta, M. Properties and deformation behaviour of Mg-Y2O3 nanocomposites. Acta Mater. 2007, 55, 5115–5121. [Google Scholar] [CrossRef]
- Hwang, S.; Nishimura, C.; McCormick, P.G. Compressive mechanical properties of Mg-Ti-C nanocomposite synthesised by mechanical milling. Scr. Mater. 2001, 44, 2457–2462. [Google Scholar] [CrossRef]
Materials | Yield Strength (MPa) | Ultimate Tensile Strength (MPa) | Elongation (%) |
---|---|---|---|
AZ91-6P | 158 ± 4.1 | 292 ± 7.6 | 7.8 ± 0.7 |
AZ91-9P | 178 ± 5.4 | 257 ± 6.4 | 2.6 ± 0.3 |
AZ91-12P | 175 ± 5.2 | 286 ± 7.1 | 11 ± 0.9 |
nano-SiCp/AZ91-6P | 194 ± 5.7 | 300 ± 7.8 | 9.2 ± 0.6 |
nano-SiCp/AZ91-9P | 217 ± 6.2 | 289 ± 7.3 | 2.5 ± 0.2 |
nano-SiCp/AZ91-12P | 206 ± 5.9 | 285 ± 6.9 | 3.3 ± 0.4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nie, K.B.; Han, J.G.; Deng, K.K.; Wang, X.J.; Xu, C.; Wu, K. The Comparison in the Microstructure and Mechanical Properties between AZ91 Alloy and Nano-SiCp/AZ91 Composite Processed by Multi-Pass Forging Under Varying Passes and Temperatures. Materials 2019, 12, 625. https://doi.org/10.3390/ma12040625
Nie KB, Han JG, Deng KK, Wang XJ, Xu C, Wu K. The Comparison in the Microstructure and Mechanical Properties between AZ91 Alloy and Nano-SiCp/AZ91 Composite Processed by Multi-Pass Forging Under Varying Passes and Temperatures. Materials. 2019; 12(4):625. https://doi.org/10.3390/ma12040625
Chicago/Turabian StyleNie, K.B., J.G. Han, K.K. Deng, X.J. Wang, C. Xu, and K. Wu. 2019. "The Comparison in the Microstructure and Mechanical Properties between AZ91 Alloy and Nano-SiCp/AZ91 Composite Processed by Multi-Pass Forging Under Varying Passes and Temperatures" Materials 12, no. 4: 625. https://doi.org/10.3390/ma12040625
APA StyleNie, K. B., Han, J. G., Deng, K. K., Wang, X. J., Xu, C., & Wu, K. (2019). The Comparison in the Microstructure and Mechanical Properties between AZ91 Alloy and Nano-SiCp/AZ91 Composite Processed by Multi-Pass Forging Under Varying Passes and Temperatures. Materials, 12(4), 625. https://doi.org/10.3390/ma12040625