Solvothermal Preparation and Electrochemical Characterization of Cubic ZrO2 Nanoparticles/Highly Reduced Graphene (HRG) based Nanocomposites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of HRG@ZrO2 and ZrO2 NPs
2.3. Characterization
3. Results and Discussion
3.1. XRD Analysis
3.2. TEM Analysis
3.3. UV analysis
3.4. FTIR analysis
3.5. TGA Analysis
3.6. Raman and XPS Analysis
3.7. Electrochemical Performance of the HRG, ZrO2 and HRG@ZrO2 Nanocomposite
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Peng, L.; Xiong, P.; Ma, L.; Yuan, Y.; Zhu, Y.; Chen, D.; Luo, X.; Lu, J.; Amine, K.; Yu, G. Holey two-dimensional transition metal oxide nanosheets for efficient energy storage. Nat. Commun. 2017, 8, 15139. [Google Scholar] [CrossRef] [PubMed]
- Mohri, N.; Oschmann, B.; Laszczynski, N.; Mueller, F.; von Zamory, J.; Tahir, M.N.; Passerini, S.; Zentel, R.; Tremel, W. Synthesis and characterization of carbon coated sponge-like tin oxide (SnOx) films and their application as electrode materials in lithium-ion batteries. J. Mater. Chem. A 2016, 4, 612–619. [Google Scholar] [CrossRef]
- Wang, L.; Zeng, Z.; Ma, C.; Liu, Y.; Giroux, M.; Chi, M.; Jin, J.; Greeley, J.; Wang, C. Plating precious metals on nonprecious metal nanoparticles for sustainable electrocatalysts. Nano Lett. 2017, 17, 3391–3395. [Google Scholar] [CrossRef] [PubMed]
- Tahir, M.N.; Oschmann, B.; Buchholz, D.; Dou, X.; Lieberwirth, I.; Panthöfer, M.; Tremel, W.; Zentel, R.; Passerini, S. Extraordinary Performance of Carbon-Coated Anatase TiO2 as Sodium-Ion Anode. Adv. Energy Mater. 2016, 6, 1501489. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Park, S.-J. Facile construction of MoO3@ ZIF-8 core-shell nanorods for efficient photoreduction of aqueous Cr (VI). Appl. Catal. B: Environ. 2019, 240, 92–101. [Google Scholar] [CrossRef]
- Longoni, G.; Pena Cabrera, R.L.; Polizzi, S.; D’Arienzo, M.; Mari, C.M.; Cui, Y.; Ruffo, R. Shape-controlled TiO2 nanocrystals for Na-ion battery electrodes: The role of different exposed crystal facets on the electrochemical properties. Nano Lett. 2017, 17, 992–1000. [Google Scholar] [CrossRef] [PubMed]
- Bresser, D.; Oschmann, B.; Tahir, M.N.; Mueller, F.; Lieberwirth, I.; Tremel, W.; Zentel, R.; Passerini, S. Carbon-coated anatase TiO2 nanotubes for Li-and Na-ion anodes. J. Electrochem. Soc. 2015, 162, A3013–A3020. [Google Scholar] [CrossRef]
- Farka, Z.; Juřík, T.; Kovář, D.; Trnková, L.; Skládal, P. Nanoparticle-based immunochemical biosensors and assays: recent advances and challenges. Chem. Rev. 2017, 117, 9973–10042. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Akiba, U.; Anzai, J.I. Recent progress in nanomaterial-based electrochemical biosensors for cancer biomarkers: A review. Molecules 2017, 22, 1048. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Park, S.J. Bimetallic AuPd alloy nanoparticles deposited on MoO 3 nanowires for enhanced visible-light driven trichloroethylene degradation. J. Catal. 2018, 361, 238–247. [Google Scholar] [CrossRef]
- Zhang, Y.; Park, S.-J. Au–pd bimetallic alloy nanoparticle-decorated BiPO4 nanorods for enhanced photocatalytic oxidation of trichloroethylene. J. Catal. 2017, 355, 1–10. [Google Scholar] [CrossRef]
- Chen, Y.; Lunsford, S.; Dionysiou, D.D. Characterization and electrochemical response of sonogel carbon electrode modified with nanostructured zirconium dioxide film. Sens. Actuators B Chem. 2009, 137, 291–296. [Google Scholar] [CrossRef]
- Vilian, A.E.; Rajkumar, M.; Chen, S.-M. In situ electrochemical synthesis of highly loaded zirconium nanoparticles decorated reduced graphene oxide for the selective determination of dopamine and paracetamol in presence of ascorbic acid. Colloids Surf. B 2014, 115, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Tahir, M.N.; Gorgishvili, L.; Li, J.; Gorelik, T.; Kolb, U.; Nasdala, L.; Tremel, W. Facile synthesis and characterization of monocrystalline cubic ZrO2 nanoparticles. Solid State Sci. 2007, 9, 1105–1109. [Google Scholar] [CrossRef]
- Chraska, T.; King, A.H.; Berndt, C.C. On the size-dependent phase transformation in nanoparticulate zirconia. Mater. Sci. Eng. A 2000, 286, 169–178. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, S.; Tiwari, S.; Srivastava, S.; Srivastava, M.; Yadav, B.K.; Kumar, S.; Tran, T.T.; Dewan, A.K.; Mulchandani, A. Biofunctionalized nanostructured zirconia for biomedical application: A smart approach for oral cancer detection. Adv. Sci. 2015, 2, 1500048. [Google Scholar] [CrossRef] [PubMed]
- Mudila, H.; Rana, S.; Zaidi, M. Electrochemical performance of zirconia/graphene oxide nanocomposites cathode designed for high power density supercapacitor. J. Anal. Sci. Technol. 2016, 7, 3. [Google Scholar] [CrossRef]
- Khan, M.; Tahir, M.N.; Adil, S.F.; Khan, H.U.; Siddiqui, M.R.H.; Al-warthan, A.A.; Tremel, W. Graphene based metal and metal oxide nanocomposites: Synthesis, properties and their applications. J. Mater. Chem. A 2015, 3, 18753–18808. [Google Scholar] [CrossRef]
- Mansha, M.; Qurashi, A.; Ullah, N.; Bakare, F.O.; Khan, I.; Yamani, Z.H. Synthesis of In2O3/graphene heterostructure and their hydrogen gas sensing properties. Ceram. Int. 2016, 42, 11490–11495. [Google Scholar] [CrossRef]
- Zhang, Y.; Park, S.-J. Incorporation of RuO2 into charcoal-derived carbon with controllable microporosity by CO2 activation for high-performance supercapacitor. Carbon 2017, 122, 287–297. [Google Scholar] [CrossRef]
- Heshmatpour, F.; Aghakhanpour, R.B. Synthesis and characterization of nanocrystalline zirconia powder by simple sol–gel method with glucose and fructose as organic additives. Powder Technol. 2011, 205, 193–200. [Google Scholar] [CrossRef]
- Anandan, K.; Rajesh, K.; Rajendran, V. Size, morphology and optical properties of zirconia (ZrO2) nanostructures synthesized via the facile ionic surfactant-assisted solvothermal method. J. Mater. Sci. Mater. Electron. 2017, 28, 13420–13425. [Google Scholar] [CrossRef]
- Teymourian, H.; Salimi, A.; Firoozi, S.; Korani, A.; Soltanian, S. One-pot hydrothermal synthesis of zirconium dioxide nanoparticles decorated reduced graphene oxide composite as high performance electrochemical sensing and biosensing platform. Electrochim. Acta 2014, 143, 196–206. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, Y.; Hao, L.; Zhu, Z.; Li, F.; Liu, S. Reduced Graphene Oxide-Zirconium Dioxide-Thionine Nanocomposite Integrating Recognition, Amplification and Signaling for Electrochemical Assay of Protein Kinase Activity and Inhibitor Screening. ACS Appl. Bio Mater. 2018, 1, 1557–1565. [Google Scholar] [CrossRef]
- Bugaev, A.; Polyakov, V.; Tereshchenko, A.; Isaeva, A.; Skorynina, A.; Kamyshova, E.; Budnyk, A.; Lastovina, T.; Soldatov, A. Chemical Synthesis and Characterization of Pd/SiO2: The Effect of Chemical Reagent. Metals 2018, 8, 135. [Google Scholar] [CrossRef]
- Wu, Q.; Huang, F.; Zhao, M.; Xu, J.; Zhou, J.; Wang, Y. Ultra-small yellow defective TiO2 nanoparticles for co-catalyst free photocatalytic hydrogen production. Nano Energy 2016, 24, 63–71. [Google Scholar] [CrossRef]
- Niederberger, M.; Bartl, M.H.; Stucky, G.D. Benzyl alcohol and transition metal chlorides as a versatile reaction system for the nonaqueous and low-temperature synthesis of crystalline nano-objects with controlled dimensionality. J. Am. Chem. Soc. 2002, 124, 13642–13643. [Google Scholar] [CrossRef] [PubMed]
- Shaik, M.R.; Al-Marri, A.H.; Adil, S.F.; Mohri, N.; Barton, B.; Siddiqui, M.R.; Al-Warthan, A.; Labis, J.P.; Tremel, W.; Khan, M. Benzyl alcohol assisted synthesis and characterization of highly reduced graphene oxide (HRG)@ ZrO2 nanocomposites. ChemistrySelect 2017, 2, 3078–3083. [Google Scholar] [CrossRef]
- Salavati-Niasari, M.; Dadkhah, M.; Davar, F. Pure cubic ZrO2 nanoparticles by thermolysis of a new precursor. Polyhedron 2009, 28, 3005–3009. [Google Scholar] [CrossRef]
- Zhou, S.; Garnweitner, G.; Niederberger, M.; Antonietti, M. Dispersion behavior of zirconia nanocrystals and their surface functionalization with vinyl group-containing ligands. Langmuir 2007, 23, 9178–9187. [Google Scholar] [CrossRef] [PubMed]
- Love, C.J.; Smith, J.D.; Cui, Y.; Varanasi, K.K. Size-dependent thermal oxidation of copper: Single-step synthesis of hierarchical nanostructures. Nanoscale 2011, 3, 4972–4976. [Google Scholar] [CrossRef]
- Khan, M.; Al-Marri, A.H.; Khan, M.; Mohri, N.; Adil, S.F.; Al-Warthan, A.; Siddiqui, M.R.H.; Alkhathlan, H.Z.; Berger, R.; Tremel, W. Pulicaria glutinosa plant extract: A green and eco-friendly reducing agent for the preparation of highly reduced graphene oxide. RSC Adv. 2014, 4, 24119–24125. [Google Scholar] [CrossRef]
- Clabel, J.; Rivera, V.; Li, M.S.; Nunes, L.; Leite, E.; Schreiner, W.; Marega, E., Jr. Near-infrared light emission of Er3+-doped zirconium oxide thin films: An optical, structural and XPS study. J. Alloys Compd. 2015, 619, 800–806. [Google Scholar] [CrossRef]
- Xu, X.; Xu, C.; Dai, J.; Hu, J.; Li, F.; Zhang, S. Size dependence of defect-induced room temperature ferromagnetism in undoped ZnO nanoparticles. J. Phys. Chem. C 2012, 116, 8813–8818. [Google Scholar] [CrossRef]
- Gurushantha, K.; Anantharaju, K.; Renuka, L.; Sharma, S.; Nagaswarupa, H.; Prashantha, S.; Vidya, Y.; Nagabhushana, H. New green synthesized reduced graphene oxide–ZrO2 composite as high performance photocatalyst under sunlight. RSC Adv. 2017, 7, 12690–12703. [Google Scholar] [CrossRef]
- Xu, Y.; Li, J.; Huang, W. Porous graphene oxide prepared on nickel foam by electrophoretic deposition and thermal reduction as high-performance supercapacitor electrodes. Materials 2017, 10, 936. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaik, M.R.; Alam, M.; Adil, S.F.; Kuniyil, M.; Al-Warthan, A.; Siddiqui, M.R.H.; Tahir, M.N.; Labis, J.P.; Khan, M. Solvothermal Preparation and Electrochemical Characterization of Cubic ZrO2 Nanoparticles/Highly Reduced Graphene (HRG) based Nanocomposites. Materials 2019, 12, 711. https://doi.org/10.3390/ma12050711
Shaik MR, Alam M, Adil SF, Kuniyil M, Al-Warthan A, Siddiqui MRH, Tahir MN, Labis JP, Khan M. Solvothermal Preparation and Electrochemical Characterization of Cubic ZrO2 Nanoparticles/Highly Reduced Graphene (HRG) based Nanocomposites. Materials. 2019; 12(5):711. https://doi.org/10.3390/ma12050711
Chicago/Turabian StyleShaik, Mohammed Rafi, Manawwer Alam, Syed Farooq Adil, Mufsir Kuniyil, Abdulrahman Al-Warthan, Mohammed Rafiq H Siddiqui, Muhammad Nawaz Tahir, Joselito P. Labis, and Mujeeb Khan. 2019. "Solvothermal Preparation and Electrochemical Characterization of Cubic ZrO2 Nanoparticles/Highly Reduced Graphene (HRG) based Nanocomposites" Materials 12, no. 5: 711. https://doi.org/10.3390/ma12050711
APA StyleShaik, M. R., Alam, M., Adil, S. F., Kuniyil, M., Al-Warthan, A., Siddiqui, M. R. H., Tahir, M. N., Labis, J. P., & Khan, M. (2019). Solvothermal Preparation and Electrochemical Characterization of Cubic ZrO2 Nanoparticles/Highly Reduced Graphene (HRG) based Nanocomposites. Materials, 12(5), 711. https://doi.org/10.3390/ma12050711