Functionalisation of Silicone by Drug-Embedded Chitosan Nanoparticles for Potential Applications in Otorhinolaryngology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Chitosan, TPP and CoAM Solutions
2.3. Preparation of Bare and Loaded Chitosan Nanoparticles
2.4. Preparation of Silicone Material and O2 Plasma Treatment
2.5. Application of Chitosan Nanoparticles onto Silicone Material
2.6. Characterisation of Dispersions
2.6.1. Evaluation of Hydrodynamic Diameter, PDI and ζ-Potential
2.6.2. Drug Encapsulation Efficiency
2.7. Surface Characterisation
2.7.1. X-ray Photoelectron Spectroscopy
2.7.2. Scanning Electron Microscopy
2.8. Evaluation of Antimicrobial Activity
2.9. In Vitro Drug Release Testing
3. Results and Discussion
3.1. Nanoparticle Dispersions
3.1.1. Hydrodynamic Diameter, PDI and ζ-Potential
3.1.2. Drug Encapsulation Efficiency
3.2. Functionalised Silicone
3.2.1. Surface Analysis by XPS
3.2.2. SEM Micrographs Morphology Evaluation
3.3. Antimicrobial Assay
3.4. In Vitro Drug Release Testing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Francolini, I.; Vuotto, C.; Piozzi, A.; Donelli, G. Antifouling and antimicrobial biomaterials: an overview. Apmis 2017, 125, 392–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Percival, S.L.; Suleman, L.; Vuotto, C.; Donelli, G. Healthcare-Associated infections, medical devices and biofilms: Risk, tolerance and control. J. Med. Microbiol. 2015, 64, 323–334. [Google Scholar] [CrossRef]
- Gupta, P.; Sarkar, S.; Das, B.; Bhattacharjee, S.; Tribedi, P. Biofilm, pathogenesis and prevention—a journey to break the wall: a review. Arch. Microbiol. 2016, 198, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Nurioglu, A.G.; Esteves, A.C.C.; De With, G. Non-toxic, non-biocide-release antifouling coatings based on molecular structure design for marine applications. J. Mater. Chem. B 2015, 3, 6547–6570. [Google Scholar] [CrossRef] [Green Version]
- Stoica, P.; Chifiriuc, M.C.; Rapa, M.; Lazăr, V. Overview of biofilm-related problems in medical devices. In Biofilms and Implantable Medical Devices: Infection and Control; Woodhead Publishing Limited: Duxford, UK, 2017; pp. 3–23. [Google Scholar]
- Joe, H.; Seo, Y.J. A newly designed tympanostomy stent with TiO2 coating to reduce Pseudomonas aeruginosa biofilm formation. J. Biomater. Appl. 2018, 33, 599–605. [Google Scholar] [CrossRef] [PubMed]
- Coatings for Medical Devices-Market Analysis, Trends and Forecast; Global Industry Analyst Inc.: San Jose, CA, USA, 2018; p. 227.
- Ratner, B.D.; Hoffman, A.S.; Schoen, F.J.; Lemons, J.E. Biomaterials Science: An Introduction to Materials in Medicine, 3rd ed.; Academic Press: Oxford, UK, 2014. [Google Scholar]
- Modjarrad, K.; Ebnesajjad, S. (Eds.) Handbook of Polymer Applications in Medicine and Medical Devices, 3rd ed.; William Andrew: Oxford, UK, 2013. [Google Scholar]
- Bračič, M.; Simona, S.; Fras Zemljič, L. Bioactive Functionalisation of Silicones with Polysaccharides; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar]
- van Dongen, T.M.A.; Damoiseaux, R.A.M.J.; Schilder, A.G.M. Tympanostomy tube otorrhea in children: prevention and treatment. Curr. Opin. Otolaryngol. Head Neck Surg. 2018, 26, 437–440. [Google Scholar] [CrossRef] [PubMed]
- Idicula, W.K.; Jurcisek, J.A.; Cass, N.D.; Ali, S.; Goodman, S.D.; Elmaraghy, C.A.; Jatana, K.R.; Bakaletz, L.O. Identification of biofilms in post-tympanostomy tube otorrhea. Laryngoscope 2016, 126, 1946–1951. [Google Scholar] [CrossRef]
- Tympanostomy Tube Insertion System for Children with Otitis Media. Available online: https://www.cadth.ca/sites/default/files/pdf/EH0018_TympanostomyTubeInsertionDelivery_e.pdf (accessed on 13 March 2019).
- Wolk, D.M. Microbiology of Middle Ear Infections: Do You Hear What I Hear? Clin. Microbiol. Newsl. 2016, 38, 87–93. [Google Scholar] [CrossRef]
- Söderman, A.-C.H.; Knutsson, J.; Priwin, C.; von Unge, M. A randomized study of four different types of tympanostomy ventilation tubes – One-year follow-up. Int. J. Pediatr. Otorhinolaryngol. 2016, 89, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Maitz, M.F. Applications of synthetic polymers in clinical medicine. Biosurface and Biotribology 2015, 1, 161–176. [Google Scholar] [CrossRef] [Green Version]
- El Kechai, N.; Agnely, F.; Mamelle, E.; Nguyen, Y.; Ferrary, E.; Bochot, A. Recent advances in local drug delivery to the inner ear. Int. J. Pharm. 2015, 494, 83–101. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.C.; Hamood, A.N.; Saadeh, C.; Cunningham, M.J.; Yim, M.T.; Cordero, J. Strategies to prevent biofilm-based tympanostomy tube infections. Int. J. Pediatr. Otorhinolaryngol. 2014, 78, 1433–1438. [Google Scholar] [CrossRef] [PubMed]
- Licameli, G.; Johnston, P.; Luz, J.; Daley, J.; Kenna, M. Phosphorylcholine-coated antibiotic tympanostomy tubes: Are post-tube placement complications reduced? Int. J. Pediatr. Otorhinolaryngol. 2008, 72, 1323–1328. [Google Scholar] [CrossRef] [PubMed]
- Kinnari, T.J.; Salonen, E.M.; Jero, J. New method for coating tympanostomy tubes to prevent tube occlusions. Int. J. Pediatr. Otorhinolaryngol. 2001, 58, 107–111. [Google Scholar] [CrossRef]
- Kinnari, T.J.; Rihkanen, H.; Laine, T.; Salonen, E.M.; Jero, J. Albumin-coated tympanostomy tubes: Prospective, double-blind clinical study. Laryngoscope 2004, 114, 2038–2043. [Google Scholar] [CrossRef] [PubMed]
- Nelson, E.E.; Guyer, A.E. The Long-term Release of Antibiotics From Monolithic Nonporous Polymer Implants for Use as Tympanostomy Tubes. Colloids Surf. A Physicochem. Eng. Asp. 2012, 1, 233–245. [Google Scholar]
- Lianhua, Y.; Yunchao, H.; Geng, X. Effect of Brominated Furanones on the Formation of Biofilm by Escherichia coli on Polyvinyl Chloride Materials. Cell Biochem. Biophys. 2013, 67, 893–897. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.C.; Tran, P.L.; Hanes, R.; Cordero, J.; Marchbanks, J.; Reid, T.W.; Colmer-Hamood, J.A.; Hamood, A.N. Inhibition of otopathogenic biofilms by organoselenium-coated tympanostomy tubes. JAMA Otolaryngol. Head Neck Surg. 2013, 139, 1009–1016. [Google Scholar] [CrossRef]
- Ojano-Dirain, C.P.; Silva, R.C.; Antonelli, P.J. Biofilm formation on coated silicone tympanostomy tubes. Int. J. Pediatr. Otorhinolaryngol. 2013, 77, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Martinelli, A.; Bakry, A.; Ilario, L.D.; Francolini, I.; Piozzi, A. European Journal of Pharmaceutics and Biopharmaceutics Release behavior and antibiofilm activity of usnic acid-loaded carboxylated poly (L-lactide) microparticles. Eur. J. Pharm. Biopharm. 2014, 88, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Yao, J. Fabrication and in vitro release behavior of a novel antibacterial coating containing halogenated furanone-loaded poly (L-lactic acid) nanoparticles on microarc-oxidized titanium. Int. J. Nanomed. 2012, 7, 5641–5652. [Google Scholar] [CrossRef]
- Press, D. Antibacterial activity and biological performance of a novel antibacterial coating containing a halogenated furanone compound loaded poly (L-lactic acid) nanoparticles on microarc-oxidized titanium. Int. J. Nanomed. 2015, 10, 727–737. [Google Scholar]
- Ristić, T.; Persin, Z.; Kralj Kuncic, M.; Kosalec, I.; Zemljic, L.F. The evaluation of the in vitro antimicrobial properties of fibers functionalized by chitosan nanoparticles. Text. Res. J. 2018, 89, 748–761. [Google Scholar] [CrossRef]
- Link, S.; El-sayed, M. Chitosan Nanoparticles for Biomedical Applications; Nova Science Publishers, Inc.: New York, NY, USA, 2003; Volume 2, pp. 401–417. [Google Scholar]
- Bračič, M.; Šauperl, O.; Strnad, S.; Kosalec, I.; Plohl, O.; Zemljič, L.F. Surface modification of silicone with colloidal polysaccharides formulations for the development of antimicrobial urethral catheters. Appl. Surf. Sci. 2019, 463, 889–899. [Google Scholar] [CrossRef]
- Gericke, M.; Doliška, A.; Stana, J.; Liebert, T.; Heinze, T.; Stana-Kleinschek, K. Semi-Synthetic Polysaccharide Sulfates as Anticoagulant Coatings for PET, 1 - Cellulose Sulfate. Macromol. Biosci. 2011, 11, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Ristić, T.; Zabret, A.; Zemljič, L.F.; Peršin, Z. Chitosan nanoparticles as a potential drug delivery system attached to viscose cellulose fibers. Cellulose 2017, 24, 739–753. [Google Scholar] [CrossRef]
- Zemljič, L.F.; Peršin, Z.; Šauperl, O.; Rudolf, A.; Kostić, M. Medical textiles based on viscose rayon fabrics coated with chitosan-encapsulated iodine: antibacterial and antioxidant properties. Text. Res. J. 2018, 88, 2519–2531. [Google Scholar] [CrossRef]
- Tkavc, T.; Petrinič, I.; Luxbacher, T.; Vesel, A.; Ristić, T.; Zemljič, L.F. Influence of O2 and CO2 plasma treatment on the deposition of chitosan onto polyethylene terephthalate (PET) surfaces. Int. J. Adhes. Adhes. 2014, 48, 168–176. [Google Scholar] [CrossRef]
- ALI, S.W.; JOSHI, M.; RAJENDRAN, S. Synthesis and Characterization of Chitosan Nanoparticles With Enhanced Antimicrobial Activity. Int. J. Nanosci. 2011, 10, 979–984. [Google Scholar] [CrossRef]
- CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 11th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Gumustas, M.; Sengel-Turk, C.T.; Gumustas, A.; Ozkan, S.A.; Uslu, B. Effect of Polymer-Based Nanoparticles on the Assay of Antimicrobial Drug Delivery Systems. In Multifunctional Systems for Combined Delivery, Biosensing and Diagnostics; Elsevier Inc.: Bucharest, Romania, 2017; pp. 67–108. [Google Scholar]
- Meng, J.; Sturgis, T.F.; Youan, B.B.C. Engineering tenofovir loaded chitosan nanoparticles to maximize microbicide mucoadhesion. Eur. J. Pharm. Sci. 2011, 44, 57–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Songsurang, K.; Praphairaksit, N.; Siraleartmukul, K.; Muangsin, N. Electrospray fabrication of doxorubicin-chitosan-tripolyphosphate nanoparticles for delivery of doxorubicin. Arch. Pharm. Res. 2011, 34, 583–592. [Google Scholar] [CrossRef] [PubMed]
- Adamczyk, Z. Potential Interactions Among Particles. In Interface Science and Technology; Academic Press: Cracow, Poland, 2017; Vol. 20, pp. 9–167. [Google Scholar]
- Maver, U.; Xhanari, K.; Žižek, M.; Korte, D.; Gradišnik, L.; Franko, M.; Finšgar, M. A combination of interdisciplinary analytical tools for evaluation of multi-layered coatings on medical grade stainless steel for biomedical applications. Eur. J. Pharm. Biopharm. 2018, 128, 230–246. [Google Scholar] [CrossRef] [PubMed]
- Maver, T.; Gradi, L.; Smrke, D.M.; Kleinschek, K.S.; Maver, U. Systematic Evaluation of a Diclofenac-Loaded Carboxymethyl Cellulose-Based Wound Dressing and Its Release Performance with Changing pH and Temperature. AAPS PharmSciTech 2019, 20, 29. [Google Scholar] [CrossRef] [PubMed]
Abbrevation | Full Name/Description |
CFU | Colony-forming units |
CoAM | Co-amoxiclav |
DLS | Dynamic light scattering |
EE | Encapsulation efficiency |
HSA | Human serum albumin |
MIC | Minimal inhibitory concentration |
PBS | Phosphate buffered saline |
PDI | Polydispersity index |
PDMS | Polydimethylsiloxane |
PET | Polyethylene terephthalate |
PVP | Polyvinylpyrrolidone |
SEM | Scanning electron microscope |
TPP | Sodium tripolyphosphate |
TSA | Tryptic soy agar |
UB | Ultrasonic bath |
UV-Vis | Ultraviolet-visible |
XPS | X-ray photoelectron spectroscopy |
ZP | ζ-potential |
Notation of Samples | |
CN | Chitosan and TPP nanoparticles (CN) |
CN-CoAM | CN with encapsulated CoAM (CN-CoAM) |
PDMSCN | PDMS carrier, CN coating |
PDMSCN-CoAM | PDMS carrier, CN-CoAM coating |
PDMSPA1, CN | PDMS carrier, O2 plasma activated for 1 min (PA1), CN coating |
PDMSPA1,CN-CoAM | PDMS carrier, O2 plasma activated for 1 min (PA1), CN-CoAM coating |
PDMSPA2,CN | PDMS carrier, O2 plasma activated for 2 min (PA2), CN coating |
PDMSPA2,CN-CoAM | PDMS carrier, O2 plasma activated for 2 min (PA2), CN-CoAM coating |
PDMSPA3, CN | PDMS carrier, O2 plasma activated for 3 min (PA3), CN coating |
PDMSPA3, CN-CoAM | PDMS carrier, O2 plasma activated for 3 min (PA3), CN-CoAM coating |
PDMSPA5 | PDMS carrier, O2 plasma activated for 5 min (PA5) |
PDMSPA5, CN-CoAM | PDMS carrier, O2 plasma activated for 5 min (PA5), CN-CoAM coating |
CN before UB | CN after UB | CN-CoAM after UB | |
---|---|---|---|
dh (nm) | 1470.53 | 379.70 | 514.43 |
ζ (mV) | 27.00 | 32.43 | 5.40 |
PDI | 0.52 | 1.00 | 0.48 |
Sample | Atomic Percentage of Elements (at.%) * | |||||||
---|---|---|---|---|---|---|---|---|
C | N | O | Na | Si | P | S | Cl | |
PDMS | 47.4 | - | 28.8 | - | 24.1 | - | - | - |
PDMSCN | 46.4 | 0.6 | 29.2 | - | 23.8 | - | - | - |
PDMSCN-CoAM | 55.2 | 1.4 | 24.3 | 1.0 | 16.0 | 0.4 | 0.3 | 1.5 |
Sample | Atomic Percentage of Elements (at.%) | ||||||
---|---|---|---|---|---|---|---|
C | N | O | Na | Si | P | S | |
PDMSPA1,CN | 49.1 | 4.0 | 32.2 | 0.2 | 11.9 | 0.5 | - |
PDMSPA1,CN-CoAM | 53.9 | 4.0 | 24.8 | 1.8 | 12.2 | 0.3 | 0.8 |
PDMSPA2,CN | 35.8 | 2.2 | 39.9 | 0.1 | 21.7 | 0.2 | - |
PDMSPA2,CN-CoAM | 54.5 | 5.1 | 24.7 | 1.7 | - | - | 1.4 |
PDMSPA3,CN | 44.6 | 3.4 | 35.8 | 0.3 | 15.5 | 0.4 | - |
PDMSPA3,CN-CoAM | 52.7 | 3.8 | 23.9 | 2.8 | - | - | 1.2 |
PDMSPA5,CN | 56.2 | 5.1 | 29.8 | - | 8.1 | 0.9 | - |
PDMSPA5,CN-CoAM | 54.8 | 5.5 | 24.9 | 1.5 | 10.9 | 0.4 | 1.4 |
PDMSPA5 | 13.9 | - | 55.8 | - | 30.3 | - | - |
Sample | 1st Day | 30 Days | ||
---|---|---|---|---|
CFU/mL | Growth Reduction (%) | CFU/mL | Growth Reduction (%) | |
PDMS | 2.64 × 107 | / | 5.32 × 107 | / |
PDMSCN | 1.55 × 107 | 41.29 | 5.23 × 107 | 1.69 |
PDMSCN-CoAM | 1.59 × 106 | 93.98 | 1.35 × 105 | 99.75 |
PDMSPA1, CN | 3.59 × 107 | 0.00 | 1.32 × 108 | Bacteria growth stimulation |
PDMSPA1, CN-CoAM | 1.11 × 107 | 57.95 | 1.03 × 107 | 64.80 |
PDMSPA5, CN | 1.50 × 107 | 43.18 | 2.52 × 107 | 52.63 |
PDMSPA5, CN-CoAM | 7.79 × 105 | 97.05 | 2.80 × 107 | 67.37 |
Sample | Test after One Month from Coating Application | |
---|---|---|
CFU/mL | Growth Reduction (%) | |
PDMS | 5.64 × 104 | / |
PDMSCN | 4.18 × 104 | 25.89 |
PDMSCN-CoAM | 3.92 × 103 | 93.05 |
PDMSPA1, CN | 2.55 × 104 | 54.79 |
PDMSPA1, CN-CoAM | 2.75 × 103 | 95.12 |
PDMSPA5, CN | 3.30 × 105 | Bacteria growth stimulation |
PDMSPA5, CN-CoAM | 1.93 × 103 | 96.58 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ajdnik, U.; Zemljič, L.F.; Bračič, M.; Maver, U.; Plohl, O.; Rebol, J. Functionalisation of Silicone by Drug-Embedded Chitosan Nanoparticles for Potential Applications in Otorhinolaryngology. Materials 2019, 12, 847. https://doi.org/10.3390/ma12060847
Ajdnik U, Zemljič LF, Bračič M, Maver U, Plohl O, Rebol J. Functionalisation of Silicone by Drug-Embedded Chitosan Nanoparticles for Potential Applications in Otorhinolaryngology. Materials. 2019; 12(6):847. https://doi.org/10.3390/ma12060847
Chicago/Turabian StyleAjdnik, Urban, Lidija Fras Zemljič, Matej Bračič, Uroš Maver, Olivija Plohl, and Janez Rebol. 2019. "Functionalisation of Silicone by Drug-Embedded Chitosan Nanoparticles for Potential Applications in Otorhinolaryngology" Materials 12, no. 6: 847. https://doi.org/10.3390/ma12060847
APA StyleAjdnik, U., Zemljič, L. F., Bračič, M., Maver, U., Plohl, O., & Rebol, J. (2019). Functionalisation of Silicone by Drug-Embedded Chitosan Nanoparticles for Potential Applications in Otorhinolaryngology. Materials, 12(6), 847. https://doi.org/10.3390/ma12060847