Highly Selective CMOS-Compatible Mid-Infrared Thermal Emitter/Detector Slab Design Using Optical Tamm-States
Abstract
:1. Introduction
2. Design, Methods, and Theory of STP Resonators
2.1. Heater Design and Material Properties
2.2. Temporal Coupled-Mode Theory
3. 1D Tamm Plasmon Structures
3.1. Resonance Condition for Optical Tamm States
3.2. Simulation of 1D TP Structures
3.3. Genetic Algorithm Optimization via 1D TP Structures in Fitness Function
4. Optimization Using STP Structures as Fitness Function
5. Results and Discussion
5.1. STP Structures via 1D GA Optimization
5.1.1. Comparison between STP and 1D TP Resonances
5.1.2. Comparison between Configurations with Four and Six Layers
5.1.3. Absorptance by Silver in Dependence of Slab Thickness
5.2. GA Optimized Configurations Featuring STP Structures
5.3. Conclusion and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Properties of Si Slab Waveguide Modes and Polarization
Appendix A.2. Simulation Methods of 1D and STP Domain
Appendix A.3. Validity of Kirchhoff’s Law and Reciprocity
Appendix A.4. The Effect of Limiting the Extent of the Elctric Field Vertically
References
- Lochbaum, A.; Fedoryshyn, Y.; Dorodnyy, A.; Koch, U.; Hafner, C.; Leuthold, J. On-Chip Narrowband Thermal Emitter for Mid-IR Optical Gas Sensing. ACS Photonics 2017, 4, 1371–1380. [Google Scholar] [CrossRef]
- Ilic, O.; Bermel, P.; Chen, G.; Joannopoulos, J.D.; Celanovic, I.; Soljačić, M. Tailoring high-temperature radiation and the resurrection of the incandescent source. Nat. Nanotechnol. 2016, 11, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Mesch, M.; Weiss, T.; Hentschel, M.; Giessen, H. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 2010, 10, 2342–2348. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Zhao, D.; Ruan, Z.; Li, Q.; Yang, Y.; Qiu, M. Optimized grating as an ultra-narrow band absorber or plasmonic sensor. Opt. Lett. 2014, 39, 1137–1140. [Google Scholar] [CrossRef] [PubMed]
- Inoue, T.; de Zoysa, M.; Asano, T.; Noda, S. Realization of narrowband thermal emission with optical nanostructures. Optica 2015, 2, 27. [Google Scholar] [CrossRef]
- Symonds, C.; Lheureux, G.; Hugonin, J.P.; Greffet, J.J.; Laverdant, J.; Brucoli, G.; Lemaitre, A.; Senellart, P.; Bellessa, J. Confined tamm plasmon lasers. Nano Lett. 2013, 13, 3179–3184. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.Y.; Ishii, S.; Yokoyama, T.; Dao, T.D.; Sun, M.G.; Pankin, P.S.; Timofeev, I.V.; Nagao, T.; Chen, K.P. Narrowband wavelength selective thermal emitters by confined tamm plasmon polaritons. ACS Photonics 2017, 4, 2212–2219. [Google Scholar] [CrossRef]
- Yang, Z.; Ishii, S.; Yokoyama, T.; Dao, T.D.; Sun, M.; Nagao, T.; Chen, K. Tamm plasmon selective thermal emitters. Opt. Lett. 2016, 41, 4453. [Google Scholar] [CrossRef]
- Wang, Z.; Clark, J.K.; Ho, Y.L.; Vilquin, B.; Daiguji, H.; Delaunay, J.J. Narrowband Thermal Emission Realized through the Coupling of Cavity and Tamm Plasmon Resonances. ACS Photonics 2018, 5, 2446–2452. [Google Scholar] [CrossRef]
- Auguié, B.; Bruchhausen, A.; Fainstein, A. Critical coupling to Tamm plasmons. J. Opt. 2015, 17, 293–295. [Google Scholar] [CrossRef]
- Schwarz, B.; Reininger, P.; Ristanić, D.; Detz, H.; Andrews, A.M.; Schrenk, W.; Strasser, G. Monolithically integrated mid-infrared lab-on-a-chip using plasmonics and quantum cascade structures. Nat. Commun. 2014. [CrossRef] [PubMed]
- Lheureux, G.; Azzini, S.; Symonds, C.; Senellart, P.; Lemaître, A.; Sauvan, C.; Hugonin, J.P.; Greffet, J.J.; Bellessa, J. Polarization-Controlled Confined Tamm Plasmon Lasers. ACS Photonics 2015, 2, 842–848. [Google Scholar] [CrossRef]
- Meng, Z.M.; Hu, Y.H.; Ju, G.F.; Zhong, X.L.; Ding, W.; Li, Z.Y. Numerical investigation of optical Tamm states in two-dimensional hybrid plasmonic-photonic crystal nanobeams. J. Appl. Phys. 2014, 116, 043106. [Google Scholar] [CrossRef]
- Consani, C.; Ranacher, C.; Tortschanoff, A.; Grille, T.; Irsigler, P.; Jakoby, B. Mid-infrared photonic gas sensing using a silicon waveguide and an integrated emitter. Sens. Actuators B Chem. 2018, 274, 60–65. [Google Scholar] [CrossRef]
- Ranacher, C.; Consani, C.; Tortschanoff, A.; Jannesari, R.; Bergmeister, M.; Grille, T.; Jakoby, B. Mid-infrared absorption gas sensing using a silicon strip waveguide. Sens. Actuators A Phys. 2018, 277, 117–123. [Google Scholar] [CrossRef]
- Granier, C.H.; Afzal, F.O.; Min, C.; Dowling, J.P.; Veronis, G. Optimized aperiodic highly directional narrowband infrared emitters. J. Opt. Soc. Am. B 2014, 31, 1316–1321. [Google Scholar] [CrossRef]
- Pühringer, G.; Jakoby, B. Taming parasitic thermal emission by Tamm plasmon polaritons for the mid-infrared. J. Opt. Soc. Am. B 2018, 35, 1490–1503. [Google Scholar] [CrossRef]
- Srinivasan, K.; Painter, O. Momentum space design of high-Q photonic crystal optical cavities. Opt. Express 2002, 10, 670. [Google Scholar] [CrossRef]
- Joannopoulos, J.J.D.; Johnson, S.; Winn, J.N.J.; Meade, R.R.D. Photonic Crystals: Molding the Flow of Light; Prinston University Press: Prinston, NJ, USA, 2008. [Google Scholar]
- Lipson, M.; Pollock, C. Integrated Photonics; Kluwer Academic Publishers: Philip Drive Norwell, MA, USA, 2003. [Google Scholar]
- Pühringer, G.; Jakoby, B. Design and Numerical Evaluation of a Highly Selective CMOS-Compatible Mid-IR Thermal Emitter/Detector Structure Using Optical. Proceedings 2018, 3, 1032. [Google Scholar] [CrossRef]
- Celanovic, I.; Perreault, D.; Kassakian, J. Resonant-cavity enhanced thermal emission. Phys. Rev. B 2005, 72, 2–7. [Google Scholar] [CrossRef]
- Yoon, J.; Seol, K.H.; Song, S.H.; Magnusson, R. Critical coupling in dissipative surface-plasmon resonators with multiple ports. Opt. Express 2010, 18, 25702–25711. [Google Scholar] [CrossRef]
- Haus, H.A. Waves and Fields in Optoelectronics; Prentice-Hall: Upper Saddle River, NJ, USA, 1985. [Google Scholar]
- Kaliteevski, M.; Iorsh, I.; Brand, S.; Abram, R.A.; Chamberlain, J.M.; Kavokin, A.V.; Shelykh, I.A. Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror. Phys. Rev. B Condens. Matter Mater. Phys. 2007, 76, 1–5. [Google Scholar] [CrossRef]
- Vučković, J.; Lončar, M.; Mabuchi, H.; Scherer, A. Optimization of the Q factor in photonic crystal microcavities. IEEE J. Quantum Electron. 2002, 38, 850–856. [Google Scholar] [CrossRef]
- Johnson, S.G.; Fan, S.; Mekis, A.; Joannopoulos, J.D. Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap. Appl. Phys. Lett. 2001, 78, 3388–3390. [Google Scholar] [CrossRef]
- Mekis, A.; Joannopoulos, J.D. Tapered couplers for efficient interfacing between dielectric and photonic crystal waveguides. J. Light. Technol. 2001, 19, 861–865. [Google Scholar] [CrossRef]
- Scullion, M.G.; Krauss, T.F.; di Falco, A. High efficiency interface for coupling into slotted photonic crystal waveguides. IEEE Photonics J. 2011, 3, 203–208. [Google Scholar] [CrossRef]
- Katsidis, C.C.; Siapkas, D.I. General Transfer-Matrix Method for Optical Multilayer Systems with Coherent, Partially Coherent, and Incoherent Interference. Appl. Opt. 2002, 41, 3978. [Google Scholar] [CrossRef] [PubMed]
- Greffet, J.-J.; Nieto-Vesperinas, M. Field theory for generalized bidirectional reflectivity: Derivation of Helmholtz’s reciprocity principle and Kirchhoff’s law. J. Opt. Soc. Am. A 1998, 15, 2735. [Google Scholar] [CrossRef]
- Carminati, R.; Nieto-Vesperinas, M.; Greffet, J.-J. Reciprocity of evanescent electromagnetic waves. J. Opt. Soc. Am. A 1998, 15, 706. [Google Scholar] [CrossRef]
(µm) | |||||||
---|---|---|---|---|---|---|---|
1.5 | 0.49 | 0.35 | 0.58 | 1.00 | 69 % | 36 | 49 |
1.25 | 0.64 | 0.30 | 0.62 | 1.03 | 75 % | 36 | 60 |
1 | 0.64 | 0.33 | 0.62 | 1.05 | 75 % | 38 | 59 |
0.75 | 0.69 | 0.43 | 0.63 | 1.12 | 55 % | 37 | 55 |
(µm) | |||||||||
---|---|---|---|---|---|---|---|---|---|
1.5 | 0.43 | 0.4 | 0.36 | 0.39 | 0.26 | 0.445 | 75 % | 28 | 39 |
1.25 | 0.31 | 0.42 | 0.47 | 0.34 | 0.38 | 0.43 | 70 % | 24.5 | 36 |
1 | 0.44 | 0.42 | 0.42 | 0.39 | 0.35 | 0.46 | 60 % | 27 | 38 |
0.75 | 0.54 | 0.43 | 0.48 | 0.46 | 0.34 | 0.49 | 39 % | 28 | 36 |
(µm) | ||||||
---|---|---|---|---|---|---|
1.5 | 0.58 | 0.31 | 0.41 | 1.02 | 85% | 54 |
1.25 | 0.62 | 0.26 | 0.59 | 1.02 | 83% | 50 |
1 | 0.53 | 0.32 | 0.52 | 1.06 | 82% | 51 |
0.75 | 0.47 | 0.37 | 0.53 | 1.10 | 74% | 46 |
(µm) | ||||||||
---|---|---|---|---|---|---|---|---|
1.5 | 0.51 | 0.33 | 0.43 | 0.28 | 0.28 | 0.49 | 90% | 51 |
1.25 | 0.46 | 0.35 | 0.47 | 0.30 | 0.23 | 0.51 | 86% | 45 |
1 | 0.45 | 0.33 | 0.54 | 0.34 | 0.19 | 0.53 | 79% | 45 |
0.75 | 0.45 | 0.36 | 0.53 | 0.38 | 0.18 | 0.55 | 73% | 43 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pühringer, G.; Jakoby, B. Highly Selective CMOS-Compatible Mid-Infrared Thermal Emitter/Detector Slab Design Using Optical Tamm-States. Materials 2019, 12, 929. https://doi.org/10.3390/ma12060929
Pühringer G, Jakoby B. Highly Selective CMOS-Compatible Mid-Infrared Thermal Emitter/Detector Slab Design Using Optical Tamm-States. Materials. 2019; 12(6):929. https://doi.org/10.3390/ma12060929
Chicago/Turabian StylePühringer, Gerald, and Bernhard Jakoby. 2019. "Highly Selective CMOS-Compatible Mid-Infrared Thermal Emitter/Detector Slab Design Using Optical Tamm-States" Materials 12, no. 6: 929. https://doi.org/10.3390/ma12060929
APA StylePühringer, G., & Jakoby, B. (2019). Highly Selective CMOS-Compatible Mid-Infrared Thermal Emitter/Detector Slab Design Using Optical Tamm-States. Materials, 12(6), 929. https://doi.org/10.3390/ma12060929