Characterization of SiC Ceramic Joints Brazed Using Au–Ni–Pd–Ti High-Temperature Filler Alloy
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Typical Microstructure of the SiC/SiC Joint
3.2. Effect of Brazing Temperature on the Microstructure of the Joints
3.3. Effect of Soaking Time on the Microstructure of the Joints
3.4. Fracture Morphologies of the Joints
4. Conclusions
- (1)
- The typical microstructure of SiC/SiC joint brazed using (Au79Ni17Pd4)96Ti4 (wt.%) can be described as SiC/reaction layer/braze/reaction layer/SiC. The reaction layer at the SiC/braze interface was mainly composed of the TiC and Au (Si, Ti) layers, which meant that the SiC ceramics were wetted through a mixed mechanism of non-reactive wetting (Au (Si, Ti)) and reactive wetting (TiC). Dissolution of Si into the Au (Ni, Si) layer was a critical factor to promote wettability toward the SiC ceramics.
- (2)
- The braze in the joint was mostly constituted by Ni2Si, Pd2Si, and Au (Ni, Si). Apart from that, a substantial amount of nano-sized TiC particles were dispersed within the Au (Ni, Si) layer. In the heating stage, TiC was first generated in the braze, followed by Pd2Si and Ni2Si. The Au (Ni, Si) layer was solidified in cooling.
- (3)
- For the brazing parameters selected, increasing the brazing temperature or extending the soaking time promoted the growth of the reaction layer at the SiC/braze interface and coarsening of TiC particles within the Au (Ni, Si) layer. However, different brazing parameters used caused a negligible effect on the morphologies of Pd2Si and Ni2Si within the braze, because the rate-limiting factor controlling the nucleation and growth of the Pd2Si and Ni2Si was the concentrations of Pd and Si within the braze, respectively.
- (4)
- The SiC/SiC brazed joints fractured on the SiC, suggesting that the filler alloy was well bonded with the SiC. The residual thermal stresses should be the critical factor inducing the joint failure. To reduce the stress level, the joint microstructure should be modified through optimizing the brazing parameters coupled with chemical composition of the filler alloy.
Author Contributions
Funding
Conflicts of Interest
References
- Gu, Z.X. History review of nuclear reactor safety. Ann. Nucl. Energy 2018, 120, 682–690. [Google Scholar] [CrossRef]
- Kese, K.; Olsson, P.A.T.; Holston, A.M.A.; Broitman, E. High temperature nanoindentation hardness and young’s modulus measurement in a neutron irradiated fuel cladding material. J. Nucl. Mater. 2017, 487, 113–120. [Google Scholar] [CrossRef]
- Duan, Z.G.; Yang, H.L.; Satoh, Y.; Murakami, K.; Kano, S.; Zhao, Z.S.; Shen, J.J.; Abe, H. Current status of materials development of nuclear fuel cladding tubes for light water reactors. Nucl. Eng. Des. 2017, 316, 131–150. [Google Scholar] [CrossRef]
- Alat, E.; Motta, A.T.; Comstock, R.J.; Partezana, J.M.; Wolfe, D.E. Multilayer (TiN, TiAlN) ceramic coatings for nuclear fuel cladding. J. Nucl. Mater. 2016, 478, 236–244. [Google Scholar] [CrossRef] [Green Version]
- Pint, B.A.; Unocic, K.A. Steam oxidation evaluation of Fe-Cr alloys for accident tolerant nuclear fuel cladding. Oxid. Met. 2017, 87, 515–526. [Google Scholar] [CrossRef]
- Kim, D.; Lee, H.G.; Park, J.Y.; Kim, W.J. Fabrication and measurement of hoop strength of SiC triplex tube for nuclear fuel cladding applications. J. Nucl. Mater. 2015, 458, 29–36. [Google Scholar] [CrossRef]
- Stone, J.G.; Schleicher, R.; Deck, C.P.; Jacobsen, G.M.; Khalifa, H.E.; Back, C.A. Stress analysis and probabilistic assessment of multi-layer SiC-based accident tolerant nuclear fuel cladding. J. Nucl. Mater. 2015, 466, 682–697. [Google Scholar] [CrossRef]
- Usui, T.; Sawada, A.; Amaya, M.; Suzuki, A.; Chikada, T.; Terai, T. SiC coating as hydrogen permeation reduction and oxidation resistance for nuclear fuel cladding. J. Nucl. Sci. Technol. 2015, 3, 1–5. [Google Scholar] [CrossRef]
- Dai, X.Y.; Cao, J.; Tian, Y.T.; Chen, Z.; Song, X.G.; Feng, J.C. Effect of holding time on microstructure and mechanical properties of SiC/SiC joints brazed by Ag-Cu-Ti+B4C composite filler. Mater. Charact. 2016, 118, 294–301. [Google Scholar] [CrossRef]
- Lee, H.K.; Lee, J.Y. A study of the wetting, microstructure and bond strength in brazing SiC by Cu-X (X=Ti, V, Nb, Cr) alloys. J. Mater. Sci. 1996, 31, 4133–4140. [Google Scholar] [CrossRef]
- Chen, Z.B.; Bian, H.; Niu, C.N.; Song, X.G.; Duan, X.K.; Cao, J. Titanium-deposition assisted brazing of SiC ceramics using inactive AgCu filler. Mater. Charact. 2018, 142, 219–222. [Google Scholar] [CrossRef]
- Wang, G.; Xiao, P.; Huang, Z.J.; He, R.J. Brazing of ZrB2-SiC ceramic with amorphous CuTiNiZr filler. Ceram. Int. 2016, 42, 5130–5135. [Google Scholar] [CrossRef]
- Xiong, H.P.; Mao, W.; Xie, Y.H.; Chen, B.; Guo, W.L.; Li, X.H.; Cheng, Y.Y. Control of interfacial reactions and strength of the SiC/SiC joints brazed with newly-developed Co-based brazing alloy. J. Mater. Res. 2007, 22, 2727–2736. [Google Scholar] [CrossRef]
- Zhang, J.; Naka, M.; Zhou, Y. Brazing Si3N4 ceramic using a Cu-Pd-Ti filler alloy for high-temperature applications. J. Mater. Sci. 2004, 39, 3159–3161. [Google Scholar] [CrossRef]
- Yang, Z.W.; Zhang, L.X.; He, P.; Feng, J.C. Interfacial structure and fracture behavior of TiB whisker-reinforced C/SiC composite and TiAl joints brazed with Ti-Ni-B brazing alloy. Mater. Sci. Eng. A 2012, 532, 471–475. [Google Scholar] [CrossRef]
- Wang, J.H.; Lu, X.G.; Sundman, B.; Su, X.P. Thermodynamic assessment of the Au-Ni system. Comput. Coupling Ph. Diagr. Thermochem. 2005, 29, 263–268. [Google Scholar] [CrossRef]
- Zhuang, D.X.; Xie, M.; Liu, L.J.; Liu, M.M.; Chen, Y.T.; Zhang, J.M.; Yang, Y.C.; Hu, J.Q.; Wang, S.B.; Wang, S. Recent research on ternary phase diagram of gold alloy. Adv. Mater. Res. 2014, 834–836, 323–329. [Google Scholar] [CrossRef]
- Liao, X.J.; Mu, D.K.; Wang, J.X.; Huang, G.Q.; Huang, H.; Xu, X.P. Formation of TiC via interface reaction between diamond grits and Sn-Ti alloys at relatively low temperatures. Int. J. Refract. Met. Hard Mater. 2017, 66, 252–257. [Google Scholar] [CrossRef] [Green Version]
- Leinenbach, C.; Transchel, R.; Gorgievski, K.; Kuster, F.; Elsener, H.R.; Wegener, K. Microstructure and mechanical performance of Cu-Sn-Ti-based active braze alloy containing in situ formed nano-sized TiC particles. J. Mater. Eng. Perform. 2015, 24, 2042–2050. [Google Scholar] [CrossRef]
- Fan, D.Y.; Huang, J.H.; Sun, X.W.; Yang, J.; Chen, S.H.; Zhao, X.K. Correlation between microstructure and mechanical properties of active brazed Cf/SiC composite joints using Ti-Zr-Be. Mater. Sci. Eng. A 2016, 667, 332–339. [Google Scholar] [CrossRef]
- Wang, Z.M.; Wynblatt, P. Alloying effects of Sn and Si on wetting and energetics of solid Au/SiC interfaces. Mater. Sci. Eng. A 1999, 259, 287–295. [Google Scholar] [CrossRef]
- Liu, G.W.; Muolo, M.L.; Valenza, F.; Passerone, A. Survey on wetting of SiC by molten metals. Ceram. Int. 2010, 36, 1177–1188. [Google Scholar] [CrossRef]
- Drevet, B.; Kalogeropoulou, S.; Eustathopoulos, N. Wettability and interfacial bonding in Au-Si/SiC system. Acta Mater. 1993, 41, 3119–3126. [Google Scholar] [CrossRef]
- Liu, M.; Yang, X.M.; Zhou, H.J.; Gao, Y.T.; Xia, H.H.; Huai, P.; Zhou, X.T.; Lu, Y.L. Microstructural evolution and mechanical properties of 2D-SiCf/SiC and hastelloy N joints using 82.5Au-17.5Ni brazing filler. Adv. Eng. Mater. 2016, 18, 1967–1973. [Google Scholar] [CrossRef]
- Fine, M.E.; Conley, J.G. Discussion of “on the free energy of formation of TiC and Al4C3”. Metall. Trans. 1990, 21, 2609–2610. [Google Scholar] [CrossRef]
- Burzynska, L.; Rudnik, E.; Koza, J.; Blaz, L.; Szymanski, W. Electrodeposition and heat treatment of nickel/silicon carbide composites. Surf. Coat. Tech. 2008, 202, 2545–2556. [Google Scholar] [CrossRef]
- Baxi, H.C.; Massalski, T.B. The Pd-Si (palladium-silicon) system. Ph. Diagr. Eval. 1991, 12, 349–356. [Google Scholar] [CrossRef]
- Clevenger, L.A.; Thompson, C.V.; Tu, K.N. Explosive silicidation in nickel/amorphoussilicon multilayer thin films. J. Appl. Phys. 1990, 67, 2894–2898. [Google Scholar] [CrossRef]
- Xiong, J.T.; Zhu, Y.; Du, L.; Gao, Y.; Li, J.L. Diffusion brazing of monocrystal silicon by using germanium as filler material. Vacuum 2016, 133, 81–89. [Google Scholar] [CrossRef]
- Gerspach, M.A.; Mojarad, N.; Sharma, D.; Pfohl, T.; Ekinci, Y. Nanofluidic lab-on-a-chip trapping devices for screening electrostatics in concentration gradients. Microelectron. Eng. 2017, 175, 17–22. [Google Scholar] [CrossRef]
- Oliva, A.I.; Lugo, J.M.; Gonzalez, R.A.G.; Centeno, R.J.; Corona, J.E.; Aviles, F. Temperature coefficient of resistance and thermal expansion coefficient of 10-nm thick gold films. Thin Solid Films 2017, 623, 84–89. [Google Scholar] [CrossRef]
- Lee, S.J.; Hyun, S.M.; Han, S.W.; Lee, H.J.; Kim, J.H.; Kim, Y. A study of mechanical behavior of Au films by visual image tracing system. Adv. Mater. Res. 2007, 26, 1117–1120. [Google Scholar] [CrossRef]
- Li, X.C.; Stampfl, J.; Prinz, F.B. Mechanical and thermal expansion behavior of laser deposited metal matrix composites of invar and TiC. Mater. Sci. Eng. A 2000, 282, 86–90. [Google Scholar] [CrossRef]
- Torok, E.; Perry, A.J.; Chollet, L.; Sproul, W.D. Young’s modulus of TiN, TiC, ZrN and HfN. Thin Solid Films 1987, 153, 37–43. [Google Scholar] [CrossRef]
- Gergaud, P.; Thomas, O.; Chenevier, B. Stresses arising from a solid-state reaction between palladium films and Si (001) investigated by in situ combined x-ray diffraction and curvature measurements. J. Appl. Phys. 2003, 94, 1584–1591. [Google Scholar] [CrossRef]
- Wen, Z.Q.; Zhao, Y.H.; Hou, H.; Chen, L.W. First-principles investigation of mechanical and thermodynamic properties of nickel silicides at finite temperature. Phys. Solid State 2018, 60, 967–974. [Google Scholar] [CrossRef]
- Lee, C.S.; Lemberg, J.A.; Cho, D.G.; Roh, J.Y.; Ritchie, R.O. Mechanical properties of Si3N4 -Al2O3 FGM joints with 15 layers for high-temperature applications. J. Eur. Ceram. Soc. 2010, 30, 1743–1749. [Google Scholar] [CrossRef]
- Pietrzak, K.; Kalinski, D.; Chmielewski, M. Interlayer of Al2O3-Cr functionally graded material for reduction of thermal stresses in alumina-heat resisting steel joints. J. Eur. Ceram. Soc. 2007, 27, 1281–1286. [Google Scholar] [CrossRef]
- Sideridis, E.; Kytopoulos, V.N.; Papadopoulos, G.A.; Bourkas, G.D. The effect of low-filler volume fraction on the elastic modulus and thermal expansion coefficient of particulate composites simulated by a multiphase model. J. Appl. Polym. Sci. 2009, 111, 203–216. [Google Scholar] [CrossRef]
C | Si | Ti | Ni | Pd | Au | Phases | |
---|---|---|---|---|---|---|---|
A | 48.3 | 0.4 | 50.8 | - | - | 0.5 | TiC |
B | - | 32.5 | 13.0 | 3.5 | - | 51.1 | Au (Si, Ti) |
C | - | 1.0 | 0.6 | 3.1 | - | 95.0 | Au (Ni, Si) |
D | - | 32.0 | 0.2 | 8.0 | 55.1 | 4.8 | Pd2Si |
E | - | 37.8 | 0.2 | 60.8 | 1.1 | - | Ni2Si |
F | 56.24 | 3.79 | 27.44 | - | - | 12.53 | TiC |
G | - | 43.4 | 1.3 | 49.5 | 4.6 | 1.3 | Ni2Si |
Au | SiC | TiC | Pd2Si | Ni2Si | |
---|---|---|---|---|---|
CTE (×10−6 K−1) | 14.2 | 3.8 | 7.4 | 13.2 | 9.2 |
E (GPa) | 59 | 450 | 460 | 86 | 190 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, H.; Lu, C.; He, Y.; Zheng, W.; Yang, J.; Wang, L.; Sun, Y.; Gao, Z. Characterization of SiC Ceramic Joints Brazed Using Au–Ni–Pd–Ti High-Temperature Filler Alloy. Materials 2019, 12, 931. https://doi.org/10.3390/ma12060931
He H, Lu C, He Y, Zheng W, Yang J, Wang L, Sun Y, Gao Z. Characterization of SiC Ceramic Joints Brazed Using Au–Ni–Pd–Ti High-Temperature Filler Alloy. Materials. 2019; 12(6):931. https://doi.org/10.3390/ma12060931
Chicago/Turabian StyleHe, Huamin, Chuanyang Lu, Yanming He, Wenjian Zheng, Jianguo Yang, Limei Wang, Yuan Sun, and Zengliang Gao. 2019. "Characterization of SiC Ceramic Joints Brazed Using Au–Ni–Pd–Ti High-Temperature Filler Alloy" Materials 12, no. 6: 931. https://doi.org/10.3390/ma12060931
APA StyleHe, H., Lu, C., He, Y., Zheng, W., Yang, J., Wang, L., Sun, Y., & Gao, Z. (2019). Characterization of SiC Ceramic Joints Brazed Using Au–Ni–Pd–Ti High-Temperature Filler Alloy. Materials, 12(6), 931. https://doi.org/10.3390/ma12060931