Effect of Ti on Microstructure and Properties of Tungsten Heavy Alloy Joint Brazed by CuAgTi Filler Metal
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. Filler Metal
3.2. Microstructure of brazing joint
3.3. Mechanical Properties
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fan, J.; Han, Y.; Li, P.; Sun, Z.; Zhou, Q. Micro/nano composited tungsten material and its high thermal loading behavior. J. Nuclear Mater. 2014, 455, 717–723. [Google Scholar] [CrossRef]
- Liu, W.S.; Zhang, J.J.; Ma, Y.Z.; Zhao, Y.X.; Xu, G.; Huang, B.Y. Effect of Microwave Sintering Parameters on Microstructure and Mechanical Properties of Powder Extruded Rods of Tungsten-Based Alloy. Rare Met. Mater. Eng. 2012, 41, 1284–1288. [Google Scholar]
- Skumavc, A.; Tušek, J.; Nagode, A.; Kosec, L. Tungsten heavy alloy as a filler metal for repair welding of dies for high pressure die casting. Int. J. Mater. Res. 2013, 104, 1143–1150. [Google Scholar] [CrossRef]
- Rieth, M.; Dudarev, S.L.; de Gonzalez Vicente, S.M.; Aktaa, J.; Ahlgren, T.; Antusch, S.; Armstrong, D.E.J.; Balden, M.; Baluc, N.; Barthe, M.F.; et al. Recent progress in research on tungsten materials for nuclear fusion applications in Europe. J. Nuclear Mater. 2013, 432, 482–500. [Google Scholar] [CrossRef]
- Zhang, Y.; Galloway, A.; Wood, J.; Robbie, M.B.O.; Easton, D.; Zhu, W. Interfacial metallurgy study of brazed joints between tungsten and fusion related materials for divertor design. J. Nuclear Mater. 2014, 454, 207–216. [Google Scholar] [CrossRef]
- Easton, D.; Zhang, Y.; Wood, J.; Galloway, A.; Robbie, M.O.; Hardie, C. Brazing development and interfacial metallurgy study of tungsten and copper joints with eutectic gold copper brazing alloy. Fusion Eng. Des. 2015, 98–99, 1956–1959. [Google Scholar] [CrossRef]
- Hamilton, N.R.; Robbie, M.O.; Wood, J.; Galloway, A.; Katramados, I.; Milnes, J. The challenges in predicting the fatigue life of dissimilar brazed joints and initial finite element results for a tungsten to EUROFER97 steel brazed joint. Fusion Eng. Des. 2011, 86, 1642–1645. [Google Scholar] [CrossRef]
- Cai, Q.; Liu, W.; Ma, Y.; Liu, H. Microstructure, residual stresses and mechanical properties of diffusion bonded tungsten-steel joint using a V/Cu composite barrier interlayer. Int. J. Refract. Met. Hard Mater. 2015, 48, 312–317. [Google Scholar] [CrossRef]
- Wang, S.; Ling, Y.; Wang, J.; Xu, G. Microstructure and mechanical properties of W/Cu vacuum diffusion bonding joints using amorphous Fe-W alloy as interlayer. Vacuum 2015, 114, 58–65. [Google Scholar] [CrossRef]
- Basuki, W.W.; Aktaa, J. Process optimization for diffusion bonding of tungsten with EUROFER97 using a vanadium interlayer. J. Nuclear Mater. 2015, 459, 217–224. [Google Scholar] [CrossRef]
- Munez, C.J.; Garrido, M.A.; Rams, J.; Ureña, A. Experimental study of W-Eurofer laser brazing for divertor application. J. Nuclear Mater. 2012, 418, 239–248. [Google Scholar] [CrossRef]
- Wang, J.; Lian, Y.; Feng, F.; Chen, Z.; Tan, Y.; Yang, S.; Liu, X.; Qiang, J.; Liu, T.; Wei, M. Microstructure of the tungsten and reduced activation ferritic-martensitic steel joint brazed with an Fe-based amorphous alloy. Fusion Eng. Des. 2019, 138, 164–169. [Google Scholar] [CrossRef]
- De Prado, J.; Sánchez, M.; Wirtz, M.; Pintsuk, G.; Du, J.; Linke, J.; Ureña, A. Impact of thermal fatigue on W–W brazed joints for divertor components. J. Mater. Process. Technol. 2018, 252, 211–216. [Google Scholar] [CrossRef]
- Sánchez, M.; Garrido, M.A.; Múnez, C.J.; Rams, J.; Ureña, A. Analysis of the brazeability of W-W joints using a high temperature Ni-based alloy. Mater. Des. 2014, 54, 900–905. [Google Scholar] [CrossRef]
- Xia, C.; Sun, W.; Zhou, Y.; Zhao, M. Effect of Ni-Ti filler on brazed W-Cu/18-8 joints. J. Mater. Process. Technol. 2018, 259, 15–22. [Google Scholar] [CrossRef]
- Prado, J.D.; Sánchez, M.; Ureña, A. Evaluation of mechanically alloyed Cu-based powders as filler alloy for brazing tungsten to a reduced activation ferritic-martensitic steel. J. Nuclear Mater. 2017, 490, 188–196. [Google Scholar] [CrossRef]
- Liu, W.; Wang, Z.; Ma, Y.; Cai, Q. Investigation of tungsten/steel brazing using Ta and Cu interlayer. Fusion Eng. Des. 2016, 113, 102–118. [Google Scholar] [CrossRef]
- L OLSON, D.; Mishra, B.; Wenman, D.W. Welding, brazing and joining of refractory metals and alloys. Miner. Process. Extr. Metall. Rev. 2001, 22, 1–23. [Google Scholar] [CrossRef]
- Dai, X.; Cao, J.; Chen, Z.; Song, X.; Feng, J. Brazing SiC ceramic using novel B4C reinforced Ag-Cu-Ti composite filler. Ceram. Int. 2016, 42, 6319–6328. [Google Scholar] [CrossRef]
- Chen, Z.; Bian, H.; Niu, C.; Song, X.; Duan, X.; Cao, J.; Feng, J. Titanium-deposition assisted brazing of SiC ceramics using inactive AgCu filler. Mater. Charact. 2018, 142, 219–222. [Google Scholar] [CrossRef]
- Yang, Z.W.; Zhang, L.X.; Xue, Q.; He, P.; Feng, J.C. Interfacial microstructure and mechanical property of SiO2-BN ceramics and Invar joint brazed with Ag-Cu-Ti active filler metal. Mater. Sci. Eng. A 2012, 534, 309–313. [Google Scholar] [CrossRef]
- Hasanabadi, M.; Shamsipur, A.; Sani, H.N.; Omidvar, H.; Sakhaei, S. Interfacial microstructure and mechanical properties of tungsten carbide brazed joints using Ag-Cu-Zn + Ni/Mn filler alloy. Trans. Nonferrous Met. Soc. China 2017, 27, 2638–2646. [Google Scholar] [CrossRef]
- Sechi, Y.; Tsumura, T.; Nakata, K. Dissimilar laser brazing of boron nitride and tungsten carbide. Mater. Des. 2010, 31, 2071–2077. [Google Scholar] [CrossRef]
- Lin, C.C.; Shu, C.H.; Chen, C.; Shiue, R.K.; Shy, H.J. Brazing porous tungsten and molybdenum using palladium and titanium foils. Int. J. Refract. Met. Hard Mater. 2012, 31, 284–287. [Google Scholar] [CrossRef]
- De Prado, J.; Sánchez, M.; Utrilla, M.V.; López, M.D.; Ureña, A. Study of a novel brazing process for W-W joints in fusion applications. Mater. Des. 2016, 112, 117–123. [Google Scholar] [CrossRef]
- Shang, J.; Yan, J.; Li, N. Brazing W and Fe-Ni-Co alloy using Ag-28Cu and Ag-27Cu-3.5Ti fillers. J. Alloy. Compd. 2014, 611, 91–95. [Google Scholar] [CrossRef]
Element | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Cu | 70 | 69 | 67.5 | 65 | 62.5 | 60 |
Ag | 30 | 30 | 30 | 30 | 30 | 30 |
Ti | - | 1 | 2.5 | 5 | 7.5 | 10 |
Point | Cu (at.%) | Ag (at.%) | Ti (at.%) | Phase |
---|---|---|---|---|
A | 12.21 | 5.74 | 82.05 | α-Ti |
B | 54.47 | 3.69 | 41.84 | Ti3Cu4 |
C | 53.12 | 1.96 | 44.92 | Ti3Cu4 |
D | 59.04 | 1.03 | 39.93 | Ti3Cu4 |
E | 92.85 | 5.73 | 1.42 | α-Cu |
F | 15.10 | 84.49 | 4.41 | β-Ag |
Point | Cu (at.%) | Ag (at.%) | Ti (at.%) | W (at.%) | Phase |
---|---|---|---|---|---|
A | 53.47 | 3.99 | 40.67 | 1.87 | Ti3Cu4 |
B | 62.44 | 2.04 | 30.94 | 4.57 | Ti2Cu |
C | 8.73 | 90.17 | 1.10 | - | β-Ag |
D | 27.35 | 1.34 | 63.91 | 7.39 | Ti2Cu&α-Ti |
E | 0.67 | 0.22 | 3.34 | 95.77 | W granule |
F | 71.56 | 6.99 | 3.24 | 2.47 | α-Cu |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Qiu, X.; Ruan, Y.; Luo, C.; Xing, F. Effect of Ti on Microstructure and Properties of Tungsten Heavy Alloy Joint Brazed by CuAgTi Filler Metal. Materials 2019, 12, 1057. https://doi.org/10.3390/ma12071057
Lu Y, Qiu X, Ruan Y, Luo C, Xing F. Effect of Ti on Microstructure and Properties of Tungsten Heavy Alloy Joint Brazed by CuAgTi Filler Metal. Materials. 2019; 12(7):1057. https://doi.org/10.3390/ma12071057
Chicago/Turabian StyleLu, Yuzhen, Xiaoming Qiu, Ye Ruan, Cui Luo, and Fei Xing. 2019. "Effect of Ti on Microstructure and Properties of Tungsten Heavy Alloy Joint Brazed by CuAgTi Filler Metal" Materials 12, no. 7: 1057. https://doi.org/10.3390/ma12071057
APA StyleLu, Y., Qiu, X., Ruan, Y., Luo, C., & Xing, F. (2019). Effect of Ti on Microstructure and Properties of Tungsten Heavy Alloy Joint Brazed by CuAgTi Filler Metal. Materials, 12(7), 1057. https://doi.org/10.3390/ma12071057