Investigation of the Effect of Induction Heating on Asphalt Binder Aging in Steel Fibers Modified Asphalt Concrete
Abstract
:1. Introduction
2. Materials and Experiments
2.1. Materials
2.2. Specimen Preparation
2.2.1. Dramix Steel Fiber Covered with Asphalt Binder Film (DA)
2.2.2. Asphalt Concrete Sample
2.3. Induction Heating Test
2.4. Extraction of Asphalt Binder
2.5. Fourier Transform Infrared (FTIR) Test
2.6. Dynamic Shear Rheometer (DSR) Test
2.7. Four-Component Analysis (FCA) Test
3. Results and Discussion
3.1. DA Induction Heating
3.2. Rheological Properties Analysis
3.3. Chemical Structure Analysis
3.3.1. Multiple Induction Heating
3.3.2. Gradient Heating of Three-Layer Beams
3.4. Four-Component Analysis
4. Conclusions
- It was demonstrated that the asphalt binder inside asphalt concrete began aging during induction heating due to the rapid temperature rise of asphalt wrapped on the surface of fibers, whose aging mechanisms were thermal oxygen aging and volatilization of light components or transition of light components to weight components.
- According to DSR, the complex moduli and phase angle of asphalt binders increased and decreased severally after induction heating, indicating that the rheological properties of asphalt binders changed.
- For the binder inside asphalt concrete, there was no peak value of carbonyl index after ten cycles of induction heating, and the carbonyl index of DA was equivalent to that of asphalt binder after three cycles induction heating, indicating that relatively closed environment inside the asphalt concrete could restrain the thermal oxygen aging.
- The number of induction heating was the decisive factor to influence the change of asphalt binder component fractions, and the binder component fractions changed more slowly compared to DA.
- Although the asphalt binder aging inside asphalt concrete was slower, it was still necessary to study the effect of binders aging on the healing performance of asphalt concrete.
Author Contributions
Funding
Conflicts of Interest
References
- Liu, Q.; García, Á.; Schlangen, E.; van de Ven, M. Induction healing of asphalt mastic and porous asphalt concrete. Constr. Build. Mater. 2011, 25, 3746–3752. [Google Scholar] [CrossRef]
- Liu, Q.; García, Á.; Schlangen, E.; van de Ven, M. Induction heating of electrically conductive porous asphalt concrete. Constr. Build. Mater. 2010, 24, 1207–1213. [Google Scholar] [CrossRef]
- Norambuena-Contreras, J.; Garcia, A. Self-healing of asphalt mixture by microwave and induction heating. Mater. Des. 2016, 106, 404–414. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, C.; Li, B.; Sun, Y.; Li, H. Heating Characteristics and Induced Healing Efficiencies of Asphalt Mixture via Induction and Microwave Heating. Materials 2018, 11, 913. [Google Scholar] [CrossRef] [PubMed]
- Read, J.; Whiteoak, D. The Shell Bitumen Handbook, 5th ed.; Thomas Telford Ltd.: London, UK, 2003. [Google Scholar]
- Castro, M.; Sánchez, J.A. Fatigue and Healing of Asphalt Mixtures: Discriminate Analysis of Fatigue Curves. Transp. Eng. 2006, 132, 168–174. [Google Scholar] [CrossRef]
- Phillips, M.C. Multi-step models for fatigue and healing, and binder properties involved in healing. In Proceedings of the Eurobitume Workshop on Performance Related Properties for Bituminous Binders, Kirchberg, Luxembourg, 3–6 May 1999. [Google Scholar]
- Little, D.N.; Bhasin, A. Exploring mechanisms of healing in asphalt mixtures and quantifying its impact. In Self Healing Materials; Springer: Dordrecht, The Netherlands, 2007; Volume 100, pp. 205–218. [Google Scholar]
- Kringos, N.; Schmets, A.; Pauli, T.; Scarpas, T. A finite element base chemo-mechanical model to similate healing in bitumen. In Proceedings of the International Workshop on Chemo-mechanics of Bituminous materials, Delft, The Netherlands, 9–11 June 2009. [Google Scholar]
- García, Á. Self-healing of open cracks in asphalt mastic. Fuel 2011, 93, 264–272. [Google Scholar] [CrossRef]
- García, Á.; Schlangen, E.; van de Ven, M.; Liu, Q. A simple model to define induction heating in asphalt mastic. Constr. Build. Mater. 2012, 31, 38–46. [Google Scholar] [CrossRef]
- Liu, Q.; Schlangen, E.; van de Ven, M. Characterization of the material from the induction healing porous asphalt concrete trial section. Mater. Struct. 2013, 46, 831–839. [Google Scholar] [CrossRef]
- Liu, Q.; Wu, S.; Schlangen, E. Induction heating of asphalt mastic for crack control. Constr. Build. Mater. 2013, 4, 345–351. [Google Scholar] [CrossRef]
- Liu, Q.; Yu, W.; Schlangen, E.; van Bochove, G. Unravelling Porous Asphalt Concrete with Induction Heating. Constr. Build. Mater. 2014, 71, 152–157. [Google Scholar] [CrossRef]
- Liu, Q.; Schlangen, E.; van de Ven, M.; van Bochove, G.; van Montfort, J. Evaluation of the induction healing effect of porous asphalt concrete through four-point bending fatigue test. Constr. Build. Mater. 2012, 29, 403–409. [Google Scholar] [CrossRef]
- Garcia, A.; Schlangen, E.; Van de Ven, M. Two Ways of Closing Cracks on Asphalt Concrete Pavements: Microcapsules and Induction Heating. Key Eng. Mater. 2009, 417, 573–576. [Google Scholar] [CrossRef]
- García, A.; Norambuena-Contreras, J.; Partl, M.N. Experimental evaluation of dense asphalt concrete properties for induction heating purposes. Constr. Build. Mater. 2013, 46, 48–54. [Google Scholar] [CrossRef]
- García, A.; Schlangen, E.; Van de Ven, M.; van Vliet, D. Induction heating of mastic containing conductive fibers and fillers. Mater. Struct. 2011, 44, 499–508. [Google Scholar] [CrossRef]
- Menozzi, A.; Garcia, A.; Partl, M.N.; Tebaldi, G.; Schuetz, P. Induction healing of fatigue damage in asphalt test samples. Constr. Build. Mater. 2015, 74, 162–168. [Google Scholar] [CrossRef]
- García, A.; Bueno, M.; Norambuena-Contreras, J.; Partl, M.N. Induction healing of dense asphalt concrete. Constr. Build. Mater. 2013, 49, 1–7. [Google Scholar] [CrossRef]
- Huo, K.-F.; Zhai, Y.-C.; Liao, K.J.; Yang, P.; Yan, F.; Wei, Y. A study on change of family composition and properties of Liaoshu paving asphalt on aging. J. Petroleum Sci. Technol. 2001, 19, 651–660. [Google Scholar]
- Liu, X.; Wu, S.; Liu, G.; Li, L. Effect of ultraviolet aging on rheology and chemistry of LDH-modified bitumen. Materials 2015, 8, 5238–5249. [Google Scholar] [CrossRef]
- Pang, L.; Zhang, X.; Wu, S.; Ye, Y.; Li, Y. Influence of water solute exposure on the chemical evolution and rheological properties of asphalt. Materials 2018, 11, 983. [Google Scholar] [CrossRef]
- Li, H.; Yu, J.; Wu, S.; Liu, Q.; Li, B.; Li, Y.; Wu, Y. Study on the gradient heating and healing behaviors of asphalt concrete induced by induction heating. Constr. Build. Mater. 2019, 208, 638–645. [Google Scholar] [CrossRef]
- Zeng, W.; Wu, S.; Wen, J.; Chen, Z. The temperature effects in aging index of asphalt during UV aging process. Constr. Build. Mater. 2015, 93, 1125–1131. [Google Scholar] [CrossRef]
- Lamontagne, J.; Dumas, P.; Mouillet, V.; Kister, J. Comparison by Fourier transform infrared (FTIR) spectroscopy of different ageing techniques: Application to road bitumens. Fuel 2001, 80, 483–488. [Google Scholar] [CrossRef]
- Liu, G.; Leegwater, G.; Nielsen, E.; Komacka, J.; van de Ven, M. Evaluating the rheological properties of PMB-containing RA binders from surface-layer asphalt mixtures to be recycled. Constr. Build. Mater. 2013, 49, 8–14. [Google Scholar] [CrossRef]
- Li, Y.; Wu, S.; Dai, Y.; Pang, L.; Liu, Q.; Xie, J.; Kong, D. Investigation of sodium stearate organically modified LDHs effect on the anti-aging properties of asphalt binder. Constr. Build. Mater. 2018, 172, 509–518. [Google Scholar] [CrossRef]
- Li, Y.; Wu, S.; Pang, L.; Liu, Q.; Wang, Z.; Zhang, A. Investigation of the effect of Mg-Al-LDH on pavement performance and aging resistance of styrene-butadiene-styrene modified asphalt. Constr. Build. Mater. 2018, 172, 584–596. [Google Scholar] [CrossRef]
Materials | Properties | Values | Specifications |
---|---|---|---|
Bitumen | Penetration (25 °C, 100 g, 5 s, 0.1 mm) | 68 | 60–80 |
Ductility (15 °C, cm) | >100 | 100 | |
Softening point (°C) | 47.5 | 47 | |
Density (g/cm3) | 1.034 | - | |
Steel wool fiber | Average length (mm) | 4.2 | - |
Equivalent diameter (μm) | 70–130 | - | |
Density (g/cm3) | 7.8 | - | |
Average heating rate (°C/s) | 12.2 | ||
Dramix steel fiber | Average length (mm) | 13 | - |
Equivalent diameter (μm) | 200 | - | |
Density (g/cm3) | 7.8 | - | |
Minimum tensile strength (N/mm2) | 2 | - | |
Average heating rate (°C/s) | 8.5 |
Specimen | Number | Induction Heating Times | Test |
---|---|---|---|
PA | – | 0 | FTIR, DSR & FCA |
Single-layer beam | 1 | 1 | |
1 | 2 | ||
1 | 3 | ||
1 | 5 | ||
1 | 10 | ||
DA | 25 + 100 | 1 | |
Three-layer beams | 1 | 10 | FTIR |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Yu, J.; Wu, S.; Liu, Q.; Li, Y.; Wu, Y.; Xu, H. Investigation of the Effect of Induction Heating on Asphalt Binder Aging in Steel Fibers Modified Asphalt Concrete. Materials 2019, 12, 1067. https://doi.org/10.3390/ma12071067
Li H, Yu J, Wu S, Liu Q, Li Y, Wu Y, Xu H. Investigation of the Effect of Induction Heating on Asphalt Binder Aging in Steel Fibers Modified Asphalt Concrete. Materials. 2019; 12(7):1067. https://doi.org/10.3390/ma12071067
Chicago/Turabian StyleLi, Hechuan, Jianying Yu, Shaopeng Wu, Quantao Liu, Yuanyuan Li, Yaqi Wu, and Haiqin Xu. 2019. "Investigation of the Effect of Induction Heating on Asphalt Binder Aging in Steel Fibers Modified Asphalt Concrete" Materials 12, no. 7: 1067. https://doi.org/10.3390/ma12071067
APA StyleLi, H., Yu, J., Wu, S., Liu, Q., Li, Y., Wu, Y., & Xu, H. (2019). Investigation of the Effect of Induction Heating on Asphalt Binder Aging in Steel Fibers Modified Asphalt Concrete. Materials, 12(7), 1067. https://doi.org/10.3390/ma12071067