Improvement of Compressibility and Thaw-Settlement Properties of Warm and Ice-Rich Frozen Soil with Cement and Additives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Experimental Method
3. Results
3.1. Compression Strain Characteristics
3.2. Water Content Change Characteristics
3.3. Sample Microstructural Changes Following Improvements
4. Discussion
4.1. Compression Coefficient
4.2. Modification Mechanism
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wu, Q.B.; Liu, Y.Z.; Zhang, J.M.; Tong, C.J. A review of recent frozen soil engineering in permafrost regions along Qinghai-Tibet Highway, China. Permafrost. Periglac. 2002, 13, 199–205. [Google Scholar]
- Lukas, U.A.; Sarah, M.S. Mathematical descriptions for the behaviour of ice-rich frozen soils at temperatures close to 0 °C. Can. Geotech. J. 2005, 42, 431–442. [Google Scholar]
- Qin, Y.; Zhang, J.; Zheng, B.; Ma, X. Experimental study for the compressible behavior of warm and ice-rich frozen soil under the embankment of Qinghai–Tibet Railroad. Cold Reg. Sci. Technol. 2009, 57, 148–153. [Google Scholar] [CrossRef]
- Dramis, F.; Govi, M.; Guglielmin, M.; Mortara, G. Mountain permafrost and slope instability in the Italian Alps: The Val Pola Landslide. Permafr. Periglac. Process. 1995, 6, 73–81. [Google Scholar] [CrossRef]
- Harris, C.; Davies, M.C.R.; Etzelmüller, B. The assessment of potential geotechnical hazards associated with mountain permafrost in a warming global climate. Permafr. Periglac. Process. 2001, 12, 145–156. [Google Scholar] [CrossRef]
- Tong, C.J.; Wu, Q.B. The effect of climate warming on the Qinghai-Tibet Highway, China. Cold. Reg. Sci. Technol. 1996, 24, 101–106. [Google Scholar]
- Zheng, B.; Zhang, J.M.; Ma, X.J.; Liu, S.W. Study on Compression deformation of warm and ice-enriched frozen soil. Chin. J. Roc. Mecha. Eng. 2009, 28, 3063–3068. (In Chinese) [Google Scholar]
- Watson, G.H.; Slusarchuk, W.A.; Rowley, R.K. Determination of Some Frozen and Thawed Properties of Permafrost Soils. Can. Geotech. J. 1973, 10, 592–606. [Google Scholar] [CrossRef] [Green Version]
- Qi, J.L.; Sheng, Y.; Zhang, J.M.; Wen, Z. Settlement of embankments in permafrost regions in the Qinghai-Tibet Plateau. Nor. Geogr. Tidsskr. 2007, 61, 49–55. [Google Scholar]
- Zheng, B.; Zhang, J.; Qin, Y. Investigation for the deformation of embankment underlain by warm and ice-rich permafrost. Cold Reg. Sci. Technol. 2010, 60, 161–168. [Google Scholar] [CrossRef]
- Cheng, G.D. A roadbed cooling approach for the construction of Qinghai-Tibet Railway. Cold. Reg. Sci. Technol. 2005, 42, 169–176. [Google Scholar] [CrossRef]
- Niu, F.J.; Cheng, G.D.; Xia, H.M.; Ma, L.F. Field experiment study on effects of duct-ventilated railway embankment on protecting the underlying permafrost. Cold. Reg. Sci. Technol. 2006, 45, 178–192. [Google Scholar]
- Cheng, G.D.; Sun, Z.Z.; Niu, F.J. Application of the roadbed cooling approach in Qinghai-Tibet railway engineering. Cold. Reg. Sci. Technol. 2008, 53, 241–258. [Google Scholar] [CrossRef]
- Wu, Q.; Ma, W.; Wen, Z.; Sheng, Y.; Wang, D.; Feng, W. Remedying embankment thaw settlement in a warm permafrost region with thermosyphons and crushed rock revetment. Can. Geotech. J. 2012, 49, 1005–1014. [Google Scholar]
- Golewski, G.L. An assessment of microcracks in the Interfacial Transition Zone of durable concrete composites with fly ash additives. Compos. Struct. 2018, 200, 515–520. [Google Scholar] [CrossRef]
- Golewski, G.L. Improvement of fracture toughness of green concrete as a result of addition of coal fly ash. Characterization of fly ash microstructure. Mater. Charact. 2017, 134, 335–346. [Google Scholar] [CrossRef]
- Basha, E.; Hashim, R.; Mahmud, H.; Muntohar, A. Stabilization of residual soil with rice husk ash and cement. Constr. Build. Mater. 2005, 19, 448–453. [Google Scholar] [CrossRef]
- Segre, N.; Joekes, I. Use of tire rubber particles as addition to cement paste. Cem. Concr. Res. 2000, 30, 1421–1425. [Google Scholar] [CrossRef]
- Aldaood, A.; Bouasker, M.; Al-Mukhtar, M. Impact of freeze–thaw cycles on mechanical behaviour of lime stabilized gypseous soils. Cold Reg. Sci. Technol. 2014, 99, 38–45. [Google Scholar] [CrossRef]
- Shibi, T.; Kamei, T. Effect of freeze–thaw cycles on the strength and physical properties of cement-stabilized soil containing recycled bassanite and coal ash. Cold Reg. Sci. Technol. 2014, 106, 36–45. [Google Scholar] [CrossRef]
- Zaimoglu, A.S. Freezing–thawing behavior of fine-grained soils reinforced with polypropylene fibers. Cold Reg. Sci. Technol. 2010, 60, 63–65. [Google Scholar] [CrossRef]
- Chai, M.; Zhang, H.; Zhang, J.; Zhang, Z. Effect of cement additives on unconfined compressive strength of warm and ice-rich frozen soil. Constr. Build. Mater. 2017, 149, 861–868. [Google Scholar] [CrossRef]
- Zohuriaan-Mehr, M.J.; Kabiri, K. Superabsorbent polymer materials: A review. Iran. Polym. J. 2008, 17, 451–477. [Google Scholar]
- Baquerizo, L.G.; Matschei, T.; Scrivener, K.L.; Saeidpour, M.; Wadsö, L. Hydration states of AFm cement phases. Cem. Concr. Res. 2015, 73, 143–157. [Google Scholar] [CrossRef]
- Pan, Z.; Feng, K.N.; Gong, K.; Zou, B.; Korayem, A.H.; Sanjayan, J.; Duan, W.H.; Collins, F. Damping and microstructure of fly ash-based geopolymers. J. Mater. Sci. 2013, 48, 3128–3137. [Google Scholar] [CrossRef]
- Zulkifley, M.T.M.; Ng, T.F.; Raj, J.K.; Hashim, R.; Bakar, A.F.A.; Paramanthan, S.; Ashraf, M.A. A review of the stabilization of tropical lowland peats. Bull. Eng. Geol. Environ. 2014, 73, 733–746. [Google Scholar] [CrossRef]
- Pinto, C.A.; Sansalone, J.J.; Cartledge, F.K.; Dweek, J.; Diaz, R.V.; Buchler, M.P. Cement Stabilization of Runoff Residuals: A Study of Stabilization/Solidification of Urban Rainfall-Runoff Residuals in Type 1 Portland Cement by XRD and 29 Si NMR Analysis. Water. Air. Soil. Poll. 2008, 188, 261–270. [Google Scholar] [CrossRef]
- Christensen, A.N.; Jensen, T.R.; Hanson, J.C. Formation of ettringite, Ca6Al2 (SO4)3 (OH)12·26H2O, AFt, and monosulfate, Ca4Al2O6 (SO4)·14H2O, AFm-14, in hydrothermal hydration of Portland cement and of calcium aluminum oxide-calcium sulfate dihydrate mixtures studied by in situ synchrotron X-ray powder diffraction. J. Solid. State. Chem. 2004, 177, 1944–1951. [Google Scholar]
- Sukmak, P.; Horpibulsuk, S.; Shen, S.-L. Strength development in clay-fly ash geopolymer. Constr. Build. Mater. 2013, 40, 566–574. [Google Scholar] [CrossRef]
- Zeng, J.J.; Shui, Z.H.; Wang, G.M. The early hydration and strength development of high-strength precast concrete with cement/metakaolin systems. J. Wuhan. Univ. Technol-Mat. Sci. Edit. 2010, 25, 712–716. [Google Scholar] [CrossRef]
- Deng, Y.F.; Zhang, T.W.; Zhao, Y.; Liu, Q.W.; Wang, Q. Mechanical behaviour and microstructure of steel slag-based composite and its application for soft clay stabilisation. Eur. J. Environ. Civ. Eng. 2017, 2017, 1–16. [Google Scholar] [CrossRef]
- Sha, W.; Pereira, G. Differential scanning calorimetry study of ordinary Portland cement paste containing metakaolin and theoretical approach of metakaolin activity. Cem. Concr. Compos. 2001, 23, 455–461. [Google Scholar] [CrossRef]
Soil Type | Particle-Size Distribution/% | Plastic Limit | Liquid Limit | pH | Major Ions | |||
---|---|---|---|---|---|---|---|---|
Siltyclay | >0.1 mm | 0.1~0.05 mm | 0.05~0.005 mm | <0.005 mm | 18.6 | 36.7 | 8.59 | Na+, SO42− |
3.69 | 11.96 | 52.83 | 31.52 |
CaO | SiO2 | Al2O3 | Fe2O3 | MgO | SO3 | R2O |
---|---|---|---|---|---|---|
62.14 | 21.24 | 5.42 | 3.72 | 1.74 | 2.57 | 0.57 |
Physical Properties | Bulk Density (mg/kg) | Dry Density (g/cm3) | Total Porosity (%) | Specific Surface Area (m2/g) |
---|---|---|---|---|
Metkaolin | 0.75 | 2.61 | 51.21 | 3.41 |
Fly ash | 0.60 | 2.08 | 71.12 | 2.12 |
Component | SiO2 | Al2O3 | CaO | K2O | Fe2O3 | Na2O | MgO | Others |
---|---|---|---|---|---|---|---|---|
Metakaolin | 41.00 | 43.50 | 0.40 | 3.20 | 0.40 | 0.40 | 0.30 | 10.80 |
Fly ash | 44.56 | 28.45 | 7.98 | 1.45 | 5.21 | 0.52 | 0.85 | 10.98 |
Item | Cement | GP | Additives | |||||
---|---|---|---|---|---|---|---|---|
SAP | AFA | ESA | MK | EN-1 | Toogood | |||
Dosage/% | 5.0 15.0 30.0 | 15.0 | 2.0 | 0.5 | 0.5 | 4.0 | 1.3 | 1.3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chai, M.; Zhang, J. Improvement of Compressibility and Thaw-Settlement Properties of Warm and Ice-Rich Frozen Soil with Cement and Additives. Materials 2019, 12, 1068. https://doi.org/10.3390/ma12071068
Chai M, Zhang J. Improvement of Compressibility and Thaw-Settlement Properties of Warm and Ice-Rich Frozen Soil with Cement and Additives. Materials. 2019; 12(7):1068. https://doi.org/10.3390/ma12071068
Chicago/Turabian StyleChai, Mingtang, and Jianming Zhang. 2019. "Improvement of Compressibility and Thaw-Settlement Properties of Warm and Ice-Rich Frozen Soil with Cement and Additives" Materials 12, no. 7: 1068. https://doi.org/10.3390/ma12071068
APA StyleChai, M., & Zhang, J. (2019). Improvement of Compressibility and Thaw-Settlement Properties of Warm and Ice-Rich Frozen Soil with Cement and Additives. Materials, 12(7), 1068. https://doi.org/10.3390/ma12071068