Effect of Jute Fiber Modification on Mechanical Properties of Jute Fiber Composite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. Chemical Treatment
2.4. Composite Preparation
2.5. Characterization
2.6. Void Fraction of the Composites
2.7. Tensile Properties of the Single Fiber
2.8. Tensile Properties of the Composites
3. Results and Discussion
3.1. Physical Properties of the Treated Fiber and the Composites
3.2. FTIR Analysis
3.3. Tensile Properties of Single Fibers
3.4. The Void Content
3.5. Tensile Properties of the Composites
3.6. Fractured Surfaces for Epoxy–Jute Fiber Composites
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mittal, V.; Saini, R.; Sinha, S. Natural fiber-mediated epoxy composites—A review. Compos. Part B Eng. 2016, 99, 425–435. [Google Scholar] [CrossRef]
- Hu, Q.; Zhang, Y.; Mao, Y.; Memon, H.; Qiu, Y.; Wei, Y.; Liu, W. A comparative study on interlaminar properties of l-shaped two-dimensional (2d) and three-dimensional (3d) woven composites. Appl. Compos. Mater. 2019, 1–22. [Google Scholar] [CrossRef]
- Dahy, H. Biocomposite materials based on annual natural fibres and biopolymers—Design, fabrication and customized applications in architecture. Construct. Build. Mater. 2017, 147, 212–220. [Google Scholar] [CrossRef]
- Gupta, M.; Srivastava, R.; Bisaria, H. Potential of jute fibre reinforced polymer composites: A review. Int. J. Fiber Text. Res. 2015, 5, 30–38. [Google Scholar]
- Patel, J.P.; Parsania, P.H. Fabrication and comparative mechanical, electrical and water absorption characteristic properties of multifunctional epoxy resin of bisphenol-c and commercial epoxy-treated and -untreated jute fiber-reinforced composites. Polym. Bull. 2017, 74, 485–504. [Google Scholar] [CrossRef]
- Bowman, S.; Jiang, Q.; Memon, H.; Qiu, Y.; Liu, W.; Wei, Y. Effects of styrene-acrylic sizing on the mechanical properties of carbon fiber thermoplastic towpregs and their composites. Molecules 2018, 23, 547. [Google Scholar] [CrossRef] [PubMed]
- Hassan, E.A.M.; Elagib, T.H.H.; Memon, H.; Yu, M.; Zhu, S. Surface modification of carbon fibers by grafting peek-nh2 for improving interfacial adhesion with polyetheretherketone. Materials 2019, 12, 778. [Google Scholar] [CrossRef]
- Islam, M.; Alauddin, M. World production of jute: A comparative analysis of bangladesh. Int. J. Manag. Bus. Stud. 2012, 2, 14–22. [Google Scholar]
- Mishra, V.; Biswas, S. Physical and mechanical properties of bi-directional jute fiber epoxy composites. Proc. Eng. 2013, 51, 561–566. [Google Scholar] [CrossRef]
- Ahmadi, M.S.; Dastan, T. Impact and flexural properties of hybrid jute/htpet fibre reinforced epoxy composites. Indian J. Fiber Text. Res. 2017, 42, 307–311. [Google Scholar]
- Ilman, K.A.; Jamasri; Kusmono; Hestiawan, H. The tensile strength evaluation of untreated agel leaf/jute/glass fiber-reinforced hybrid composite. IOP Conf. Ser.: Mater. Sci. Eng. 2018, 288, 012088. [Google Scholar] [CrossRef]
- Panigrahi, A.; Jena, H.; Surekha, B. Effect of clams shell in impact properties of jute epoxy composite. Mater. Proc. 2018, 5, 19997–20001. [Google Scholar] [CrossRef]
- Selver, E.; Ucar, N.; Gulmez, T. Effect of stacking sequence on tensile, flexural and thermomechanical properties of hybrid flax/glass and jute/glass thermoset composites. J. Ind. Text. 2018, 48, 494–520. [Google Scholar] [CrossRef]
- Sinha, A.K.; Narang, H.K.; Bhattacharya, S. Mechanical properties of natural fibre polymer composites. J. Polym. Eng. 2017, 37, 879–895. [Google Scholar] [CrossRef]
- Swain, P.T.R.; Biswas, S. Influence of fiber surface treatments on physico-mechanical behaviour of jute/epoxy composites impregnated with aluminium oxide filler. J. Compos. Mater. 2017, 51, 3909–3922. [Google Scholar] [CrossRef]
- Devireddy, S.B.R.; Biswas, S. Physical and mechanical behavior of unidirectional banana/jute fiber reinforced epoxy based hybrid composites. Polym. Compos. 2017, 38, 1396–1403. [Google Scholar] [CrossRef]
- Cavallaro, G.; Milioto, S.; Parisi, F.; Lazzara, G. Halloysite nanotubes loaded with calcium hydroxide: Alkaline fillers for the deacidification of waterlogged archeological woods. ACS Appl. Mater. Interfaces 2018, 10, 27355–27364. [Google Scholar] [CrossRef] [PubMed]
- Cavallaro, G.; Danilushkina, A.A.; Evtugyn, V.G.; Lazzara, G.; Milioto, S.; Parisi, F.; Rozhina, E.V.; Fakhrullin, R.F. Halloysite nanotubes: Controlled access and release by smart gates. Nanomaterials 2017, 7, 199. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Q.; Xia, Z.; Yu, J.; Cheng, L. Mechanical modification of degummed jute fibre for high value textile end uses. Ind. Crops Prod. 2010, 31, 43–47. [Google Scholar] [CrossRef]
- Anna, D.K.F.; Balan, A.; Bin, H.; Xian, G.; Thomas, S. Effect of surface modification of jute fiber on the mechanical properties and durability of jute fiber-reinforced epoxy composites. Polym. Compos. 2018, 39, E2519–E2528. [Google Scholar]
- Sever, K.; Sarikanat, M.; Seki, Y.; Erkan, G.; Erdoğan, Ü.H.; Erden, S. Surface treatments of jute fabric: The influence of surface characteristics on jute fabrics and mechanical properties of jute/polyester composites. Ind. Crops Prod. 2012, 35, 22–30. [Google Scholar] [CrossRef]
- Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials; ASTM D3039/D3039M; ASTM International: West Conshohocken, PA, USA, 2017.
- Mwaikambo, L.Y.; Ansell, M.P. Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J. Appl. Polym. Sci. 2002, 84, 2222–2234. [Google Scholar] [CrossRef]
- Hearle, J.W.; Morton, W.E. Physical Properties of Textile Fibres; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Prosenjit, S.; Suvendu, M.; Sougata Roy, C.; Ramkrishna, S.; Debasis, R.; Basudam, A. Enhancement of tensile strength of lignocellulosic jute fibers by alkali-steam treatment. Bioresour. Technol. 2010, 101, 3182–3187. [Google Scholar]
Chemicals | Quantity (g/L) |
---|---|
NaOH | 30 |
Na2SiO3 | 3 |
Na3PO4 | 1 |
Na2SO3 | 1.2 |
MgSO4 | 0.2 |
JFC | 1.5 |
Emulsifier OP-10 | 1.5 |
Peregal O | 1 |
SDBS | 1 |
Jute Fiber | Tensile Strength (cN/tex) | Elongation at Break (%) |
---|---|---|
Untreated | 27.41 ± 0.68 | 1.51 ± 0.32 |
Scoured | 28.62 ± 1.02 | 1.63 ± 0.40 |
Designation | Composite Composition | Theoretical Density ρt g/cm3 | Experimental Density ρex g/cm3 | Void Fraction (%) |
---|---|---|---|---|
Epoxy-J 8% | Epoxy + 8% raw jute fiber | 1.155 ± 0.022 | 1.101 ± 0.034 | 4.762 ± 0.001 |
Epoxy-J 10% | Epoxy + 10% raw jute fiber | 1.161 ± 0.023 | 1.106 ± 0.025 | 4.737 ± 0.002 |
Epoxy-J 12% | Epoxy + 12% raw jute fiber | 1.165 ± 0.031 | 1.111 ± 0.031 | 4.721 ± 0.001 |
Epoxy-MJ 8% | Epoxy + 8% chemical treated jute fiber | 1.157 ± 0.019 | 1.112 ± 0.021 | 3.889 ± 0.001 |
Epoxy-MJ 12% | Epoxy + 10% chemical treated jute fiber | 1.164 ± 0.03 | 1.121 ± 0.023 | 3.694 ± 0.002 |
Epoxy-MJ 12% | Epoxy + 12% chemical treated jute fiber | 1.17 ± 0.018 | 1.128 ± 0.024 | 3.589 ± 0.001 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Memon, H.; A. M. Hassan, E.; Miah, M.S.; Ali, M.A. Effect of Jute Fiber Modification on Mechanical Properties of Jute Fiber Composite. Materials 2019, 12, 1226. https://doi.org/10.3390/ma12081226
Wang H, Memon H, A. M. Hassan E, Miah MS, Ali MA. Effect of Jute Fiber Modification on Mechanical Properties of Jute Fiber Composite. Materials. 2019; 12(8):1226. https://doi.org/10.3390/ma12081226
Chicago/Turabian StyleWang, Hua, Hafeezullah Memon, Elwathig A. M. Hassan, Md. Sohag Miah, and Md. Arshad Ali. 2019. "Effect of Jute Fiber Modification on Mechanical Properties of Jute Fiber Composite" Materials 12, no. 8: 1226. https://doi.org/10.3390/ma12081226
APA StyleWang, H., Memon, H., A. M. Hassan, E., Miah, M. S., & Ali, M. A. (2019). Effect of Jute Fiber Modification on Mechanical Properties of Jute Fiber Composite. Materials, 12(8), 1226. https://doi.org/10.3390/ma12081226