An Ab Initio Study of Vacancies in Disordered Magnetic Systems: A Case Study of Fe-Rich Fe-Al Phases
Abstract
:1. Introduction
2. Methods
3. Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Čížek, J.; Lukáč, F.; Melikhova, O.; Procházka, I.; Kužel, R. Thermal vacancies in Fe3Al studied by positron annihilation. Acta Mater. 2011, 59, 4068–4078. [Google Scholar] [CrossRef]
- Čížek, J.; Lukáč, F.; Procházka, I.; Kužel, R.; Jirásková, Y.; Janičkovič, D.; Anwand, W.; Brauer, G. Characterization of quenched-in vacancies in Fe–Al alloys. Phys. B Condens. Matter 2012, 407, 2659–2664. [Google Scholar] [CrossRef]
- Čížek, J. Characterization of lattice defects in metallic materials by positron annihilation spectroscopy: A review. J. Mater. Sci. Technol. 2018, 34, 577–598. [Google Scholar] [CrossRef]
- James, P.; Eriksson, O.; Johansson, B.; Abrikosov, I.A. Calculated magnetic properties of binary alloys between Fe, Co, Ni, and Cu. Phys. Rev. B 1999, 59, 419–430. [Google Scholar] [CrossRef]
- Mayer, J.; Meyer, B.; Oehrens, J.; Bester, G.; Börnsen, N.; Fähnle, M. Effective formation energies of atomic defects in D03-Fe3Al: An ab-initio study. Intermetallics 1997, 5, 597–600. [Google Scholar] [CrossRef]
- Kuriplach, J. Structure of Defects, their Interactions and Positron Characteristics in Fe3Al system. Phys. Procedia 2012, 35, 69–74. [Google Scholar] [CrossRef]
- Deniszczyk, J.; Boroński, E.; Hanc, A. Effect of Vacancies on Positron Annihilation and Hyperfine Interactions in Fe-Al Alloys-Ab Initio Study. Solid Compounds of Transition Elements II. Trans Tech Publications. In Solid State Phenomena; Trans Tech Publications Ltd.: Zurich, Switzerland, 2013; Volume 194, pp. 272–275. [Google Scholar]
- Kentzinger, E.; Cadeville, M.C.; Pierron-Bohnes, V.; Petry, W.; Hennion, B. Lattice dynamics and migration enthalpies in iron-rich Fe-Al alloys and ordered and B2 compounds. J. Phys. Condens. Matter 1996, 8, 5535–5553. [Google Scholar] [CrossRef]
- Gambino, D.; Alling, B. Lattice relaxations in disordered Fe-based materials in the paramagnetic state from first principles. Phys. Rev. B 2018, 98, 064105. [Google Scholar] [CrossRef]
- Koutná, N.; Holec, D.; Friák, M.; Mayrhofer, P.H.; Šob, M. Stability and elasticity of metastable solid solutions and superlattices in the MoN–TaN system: First-principles calculations. Mater. Des. 2018, 144, 310–322. [Google Scholar] [CrossRef]
- Mirzoev, A.A.; Mirzaev, D.A.; Verkhovykh, A.V. Hydrogen-vacancy interactions in ferromagnetic and paramagnetic bcc iron: Ab initio calculations. Phys. Status Solidi B Basic Solid State Phys. 2015, 252, 1966–1970. [Google Scholar] [CrossRef]
- Marceau, R.K.W.; Ceguerra, A.V.; Breen, A.J.; Palm, M.; Stein, F.; Ringer, S.P.; Raabe, D. Atom probe tomography investigation of heterogeneous short-range ordering in the ‘komplex’ phase state (K-state) of Fe-18Al (at.%). Intermetallics 2015, 64, 23–31. [Google Scholar] [CrossRef]
- Gorbatov, O.I.; Gornostyrev, Y.N.; Korzhavyi, P.A.; Ruban, A.V. Ab initio modeling of decomposition in iron based alloys. Phys. Metals Metallogr. 2016, 117, 1293–1327. [Google Scholar] [CrossRef]
- Nandipati, G.; Jiang, X.; Vemuri, R.S.; Mathaudhu, S.; Rohatgi, A. Self-learning kinetic Monte Carlo simulations of diffusion in ferromagnetic α-Fe-Si alloys. J. Phys. Condens. Matter 2018, 30. [Google Scholar] [CrossRef]
- Kulikov, N.; Postnikov, A.; Borstel, G.; Braun, J. Onset of magnetism in B2 transition-metal aluminides. Phys. Rev. B 1999, 59, 6824–6833. [Google Scholar] [CrossRef]
- Jaglicic, Z.; Jagodic, M.; Grushko, B.; Zijlstra, E.S.; Weber, T.; Steurer, W.; Dolinsek, J. The effect of thermal treatment on the magnetic state and cluster-related disorder of icosahedral Al-Pd-Mn quasicrystals. Intermetallics 2010, 18, 623–632. [Google Scholar] [CrossRef]
- Huang, S.; Worthington, D.L.; Asta, M.; Ozolins, V.; Ghosh, G.; Liaw, P.K. Calculation of impurity diffusivities in α-Fe using first-principles methods. Acta Mater. 2010, 58, 1982–1993. [Google Scholar] [CrossRef]
- Muzyk, M.; Nguyen-Manh, D.; Kurzydlowski, K.J.; Baluc, N.L.; Dudarev, S.L. Phase stability, point defects, and elastic properties of W-V and W-Ta alloys. Phys. Rev. B 2011, 84. [Google Scholar] [CrossRef]
- Piochaud, J.B.; Klaver, T.P.C.; Adjanor, G.; Olsson, P.; Domain, C.; Becquart, C.S. First-principles study of point defects in an fcc Fe-10Ni-20Cr model alloy. Phys. Rev. B 2014, 89. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.Y.; Wang, J.J.; Jin, J.F.; Liu, C.M.; Zhang, H.Y. A first-principles investigation on the effect of the divacancy defect on magnetic properties of Fe94V6 alloy. J. Appl. Phys. 2018, 124, 163904. [Google Scholar] [CrossRef]
- Schneider, A.; Fu, C.C.; Barreteau, C. Local environment dependence of Mn magnetism in bcc iron-manganese alloys: A first-principles study. Phys. Rev. B 2018, 98, 094426. [Google Scholar] [CrossRef]
- Ho, K.; Dodd, R. Point-defects in FeAl. Scr. Metall. 1978, 12, 1055–1058. [Google Scholar] [CrossRef]
- Chang, Y.; Pike, L.; Liu, C.; Bilbrey, A.; Stone, D. Correlation of the hardness and vacancy concentration in FeAl. Intermetallics 1993, 1, 107–115. [Google Scholar] [CrossRef]
- Krachler, R.; Ipser, H.; Sepiol, B.; Vogl, G. Diffusion mechanism and defect concentrations in β′-FeAl, an intermetallic compound with B2 structure. Intermetallics 1995, 3, 83–88. [Google Scholar] [CrossRef]
- Hotar, A.; Kejzlar, P.; Palm, M.; Minarik, J. The effect of Zr on high-temperature oxidation behaviour of Fe3Al-based alloys. Corros. Sci. 2015, 100, 147–157. [Google Scholar] [CrossRef]
- Brito, P.; Schuller, E.; Silva, J.; Campos, T.; de Araujo, C.R.; Carneiro, J.R. Electrochemical corrosion behaviour of (100), (110) and (111) Fe3A single crystals in sulphuric acid. Corros. Sci. 2017, 126, 366–373. [Google Scholar] [CrossRef]
- Sauthoff, G. Intermetallics; VCH Verlagsgesellschaft: Weinheim, Germany, 1995. [Google Scholar]
- Liu, C.T.; Stringer, J.; Mundy, J.N.; Horton, L.L.; Angelini, P. Ordered intermetallic alloys: An assessment. Intermetallics 1997, 5, 579–596. [Google Scholar] [CrossRef]
- Stoloff, N.S. Iron aluminides: Present status and future prospects. Mater. Sci. Eng. A 1998, 258, 1–14. [Google Scholar] [CrossRef]
- Liu, C.T.; Lee, E.H.; McKamey, C.G. An environmental-effect as the major cause for room-temperature embrittlement in FeAl. Scr. Metall. Mater 1989, 23, 875–880. [Google Scholar] [CrossRef]
- Lynch, R.J.; Heldt, L.A.; Milligan, W.W. Effects of alloy composition on environmental embrittlement of B2 ordered iron aluminides. Scr. Metall. Mater 1991, 25, 2147–2151. [Google Scholar] [CrossRef]
- Liu, C.T.; McKamey, C.G.; Lee, E.H. Environmental-effects on room-temperature ductility and fracture in Fe3Al. Scr. Metall. Mater 1990, 24, 385–389. [Google Scholar] [CrossRef]
- Lynch, R.J.; Gee, K.A.; Heldt, L.A. Environmental embrittlement of single-crystal and thermomechanically processed B2-ordered iron aluminides. Scr. Metall. Mater 1994, 30, 945–950. [Google Scholar] [CrossRef]
- Li, X.; Prokopcakova, P.; Palm, M. Microstructure and mechanical properties of Fe-Al-Ti-B alloys with additions of Mo and W. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2014, 611, 234–241. [Google Scholar] [CrossRef]
- Azmi, S.A.; Michalcova, A.; Sencekova, L.; Palm, M. Microstructure and mechanical properties of Fe-Al-Nb-B alloys. MRS Adv. 2017, 2, 1353–1359. [Google Scholar] [CrossRef]
- Lazinska, M.; Durejko, T.; Czujko, T.; Bojar, Z. The Effect of the Traverse Feed Rate on the Microstructure and Mechanical Properties of Laser Deposited Fe3Al (Zr,B) Intermetallic Alloy. Materials 2018, 11, 792. [Google Scholar] [CrossRef] [PubMed]
- Kratochvíl, P.; Daniš, S.; Minárik, P.; Pešička, J.; Král, R. Strengthening of Fe3Al Aluminides by One or Two Solute Elements. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2017, 48A, 4135–4139. [Google Scholar] [CrossRef]
- Zamanzade, M.; Barnoush, A.; Motz, C. A Review on the Properties of Iron Aluminide Intermetallics. Crystals 2016, 6, 10. [Google Scholar] [CrossRef]
- Dobeš, F.; Dymáček, P.; Friák, M. Small punch creep of Fe-Al-Cr alloy with Ce addition and its relation to uniaxial creep tests. Kov. Mater.-Met. Mater. 2018, 56, 205–212. [Google Scholar] [CrossRef]
- Jiraskova, Y.; Pizurova, N.; Titov, A.; Janickovic, D.; Friak, M. Phase separation in Fe-Ti-Al alloy—Structural, magnetic, and Mossbauer study. J. Magn. Magn. Mater. 2018, 468, 91–99. [Google Scholar] [CrossRef]
- Dymáček, P.; Dobeš, F.; Jirásková, Y.; Pizúrová, N.; Friák, M. Tensile, creep and fracture testing of prospective Fe-Al-based alloys using miniature specimens. Theor. Appl. Fract. Mech. 2019, 99, 18–26. [Google Scholar] [CrossRef]
- Šesták, P.; Friák, M.; Holec, D.; Všianská, M.; Šob, M. Strength and Brittleness of Interfaces in Fe-Al Superalloy Nanocomposites under Multiaxial Loading: An ab initio and Atomistic Study. Nanomaterials 2018, 8, 873. [Google Scholar] [CrossRef] [PubMed]
- Rank, M.; Franke, P.; Seifert, H.J. Thermodynamic investigations in the Al–Fe system: Thermodynamic modeling using CALPHAD. Int. J. Mater. Res. 2019, 110, 1–16. [Google Scholar] [CrossRef]
- Kratochvíl, P.; Pešička, J.; Král, R.; Švec, M.; Palm, M. Evaluation of solid-solution hardening of Fe-27 at. pct Al by vanadium and comparison to precipitation strengthening by vanadium carbides. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2015, 46A, 5091–5094. [Google Scholar] [CrossRef]
- Senčeková, L.; Palm, M.; Pešička, J.; Veselý, J. Microstructures, mechanical properties and oxidation behaviour of single-phase Fe3Al (D03) and two-phase α-Fe-Al (A2) + Fe3Al (D03) Fe-Al-V alloys. Intermetallics 2016, 73, 58–66. [Google Scholar] [CrossRef]
- Shahid, R.N.; Scudino, S. Strengthening of Al-Fe3Al composites by the generation of harmonic structures. Sci. Rep. 2018, 8. [Google Scholar] [CrossRef] [PubMed]
- Verona, M.N.; Setti, D.; Cortes Paredes, R.S. Microstructure and Properties of Fe3Al-Fe3AlC (x) Composite Prepared by Reactive Liquid Processing. Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 2018, 49, 529–536. [Google Scholar] [CrossRef]
- Prakash, U. Intermetallic matrix composites based on iron aluminides. In Intermetallic Matrix Composites: Properties and Applications; Mitra, R., Ed.; Woodhead Publishing Series in Composites Science and Engineering; Woodhead Publishing: Sawston, Cambridge, UK, 2018; pp. 21–35. [Google Scholar]
- Sharifitabar, M.; Khaki, J.V.; Sabzevar, M.H. Formation mechanism of TiC-Al2O3-Fe3Al composites during self-propagating high-temperature synthesis of TiO2-Al-C-Fe system. Ceram. Int. 2016, 42, 12361–12370. [Google Scholar] [CrossRef]
- Duan, X.; Gao, S.; Dong, Q.; Zhou, Y.; Xi, M.; Xian, X.; Wang, B. Reinforcement mechanism and wear resistance of Al2O3/Fe-Cr-Mo steel composite coating produced by laser cladding. Surf. Coat. Technol. 2016, 291, 230–238. [Google Scholar] [CrossRef]
- Kong, J.; Wei, Y.; Li, J.; Huang, J.; Wang, T. Microwave-assisted combustion synthesis of Fe3Al bulk nanocrystalline intermetallic matrix composites. Adv. Powder Technol. 2015, 26, 778–782. [Google Scholar] [CrossRef]
- Imandoust, A.; Zarei-Hanzaki, A.; Ou, K.L.; Yu, C.H. D03 Ordered Phase Strengthening in Dual Phase Twinning-Induced Plasticity Steel. J. Mater. Eng. Perform. 2015, 24, 2085–2090. [Google Scholar] [CrossRef]
- Cheng, J.; Yin, B.; Qiao, Z.; Yang, J.; Liu, W. Mechanical and dry-sliding tribological properties of Fe3Al based composites reinforced by novel W0.5Al0.5C0.5 particulates. Mater. Des. 2015, 66, 67–76. [Google Scholar] [CrossRef]
- Molina, A.; Torres-Islas, A.; Serna, S.; Acosta-Flores, M.; Rodriguez-Diaz, R.A.; Colin, J. Corrosion, Electrical and Mechanical Performance of Copper Matrix Composites Produced by Mechanical Alloying and Consolidation. Int. J. Electrochem. Sci. 2015, 10, 1728–1741. [Google Scholar]
- Bai, Y.; Xing, J.; Guo, Y.; Li, J.; He, Y.; Ma, S. Effect of Cr on Microstructure, Mechanical Properties, and Wear Behavior of In Situ 20 wt.%Al2O3/Fe-25Al Composites. J. Mater. Eng. Perform. 2015, 24, 936–945. [Google Scholar] [CrossRef]
- Panda, D.; Kumar, L.; Alam, S.N. Development of Al-Fe3Al Nanocomposite by Powder Metallurgy Route. Mater. Today Proc. 2015, 2, 3565–3574. [Google Scholar] [CrossRef]
- Dobeš, F.; Kratochvíl, P.; Kejzlar, P. Creep of three-phase alloy Fe-30%Al-5.2%Zr. Kov. Mater. Met. Mater. 2015, 53, 127–132. [Google Scholar] [CrossRef]
- Kattner, U.; Burton, B. Al-Fe (Aluminium-Iron). In Phase Diagrams of Binary Iron Alloys; Okamoto, H., Ed.; ASM International: Almere, The Netherlands, 1993; pp. 12–28. [Google Scholar]
- Sundman, B.; Ohnuma, I.; Dupin, N.; Kattner, U.R.; Fries, S.G. An assessment of the entire Al-Fe system including D03 ordering. Acta Mater. 2009, 57, 2896–2908. [Google Scholar] [CrossRef]
- Fähnle, M.; Meyer, B.; Mayer, J.; Oehrens, J.; Bester, G. Diffusion in metals and intermetallic compounds: The impact of an-initio calculations. MRS Proc. 1998, 527, 23. [Google Scholar] [CrossRef]
- Schaefer, H.E.; Würschum, R.; Šob, M.; Žák, T.; Yu, W.Z.; Eckert, W.; Banhart, F. Thermal vacancies and positron-lifetime measurements in Fe76.3Al23.7. Phys. Rev. B 1990, 41, 11869–11874. [Google Scholar] [CrossRef]
- Friák, M.; Deges, J.; Krein, R.; Frommeyer, G.; Neugebauer, J. Combined ab initio and experimental study of structural and elastic properties of Fe3Al-based ternaries. Intermetallics 2010, 18, 1310. [Google Scholar] [CrossRef]
- Muratov, L.S.; Cooper, B.R. Ab-initio based calculations of vacancy formation and clustering energies including lattice relaxation in Fe3Al. MRS Proc. 1998, 538, 309. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. B 1964, 136, B864–B871. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. A 1965, 140, A1133–A1138. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Perdew, J.P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244–13249. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [Green Version]
- Vosko, S.H.; Wilk, L.; Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Phys. 1980, 58, 1200. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Zunger, A.; Wei, S.; Ferreira, L.; Bernard, J. Special quasirandom structures. Phys. Rev. Lett. 1990, 65, 353–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oganov, A.R.; Glass, C.W. Crystal structure prediction using ab initio evolutionary techniques: Principles and applications. J. Chem. Phys. 2006, 124, 244704. [Google Scholar] [CrossRef] [PubMed]
- Lyakhov, A.O.; Oganov, A.R.; Stokes, H.T.; Zhu, Q. New developments in evolutionary structure prediction algorithm USPEX. Comput. Phys. Commun. 2013, 184, 1172–1182. [Google Scholar] [CrossRef]
- Oganov, A.R.; Lyakhov, A.O.; Valle, M. How Evolutionary Crystal Structure Prediction Works—And Why. Acc. Chem. Res. 2011, 44, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Wolff, J.; Franz, M.; Hehenkamp, T. Defect analysis with positron annihilation—Applications to Fe aluminides. Microchim. Acta 1997, 125, 263–268. [Google Scholar] [CrossRef]
- Friák, M.; Neugebauer, J. Ab initio study of the anomalous volume-composition dependence in Fe-Al alloys. Intermetallics 2010, 18, 1316–1321. [Google Scholar] [CrossRef]
- Miháliková, I.; Slávik, A.; Friák, M.; Všianská, M.; Koutná, N.; Holec, D.; Šob, M. First-principles study of interface energies in Fe-Al-based superalloy nanocomposites. In Proceedings of the 9th International Conference on Nanomaterials—Research and Application, Brno, Czech Republic, 18–20 October 2017; pp. 69–74. [Google Scholar]
- Miháliková, I.; Friák, M.; Jirásková, Y.; Holec, D.; Koutná, N.; Šob, M. Impact of Nano-Scale Distribution of Atoms on Electronic and Magnetic Properties of Phases in Fe-Al Nanocomposites: An Ab Initio Study. Nanomaterials 2018, 8, 1059. [Google Scholar] [CrossRef] [PubMed]
- Ponomareva, A.V.; Gornostyrev, Y.N.; Abrikosov, I.A. Ab initio calculation of the solution enthalpies of substitutional and interstitial impurities in paramagnetic fcc Fe. Phys. Rev. B 2014, 90, 014439. [Google Scholar] [CrossRef]
- Stefanowicz, S.; Kunert, G.; Simserides, C.; Majewski, J.A.; Stefanowicz, W.; Kruse, C.; Figge, S.; Li, T.; Jakieła, R.; Trohidou, K.N.; et al. Phase diagram and critical behavior of the random ferromagnet Ga1-xMnxN. Phys. Rev. B 2013, 88, 081201. [Google Scholar] [CrossRef]
- Priour, D.J.; Das Sarma, S. Critical behavior of diluted magnetic semiconductors: Apparent violation and eventual restoration of the Harris criterion for all regimes of disorder. Phys. Rev. B 2010, 81, 224403. [Google Scholar] [CrossRef]
- Ozolins, V.; Wolverton, C.; Zunger, A. Cu-Au, Ag-Au, Cu-Ag, and Ni-Au intermetallics: First-principles study of temperature-composition phase diagrams and structures. Phys. Rev. B 1998, 57, 6427–6443. [Google Scholar] [CrossRef] [Green Version]
- Müller, S. Bulk and surface ordering phenomena in binary metal alloys. J. Phys. Condens. Matter 2003, 15, R1429–R1500. [Google Scholar] [CrossRef]
- Tasnádi, F.; Lugovskoy, A.V.; Odén, M.; Abrikosov, I.A. Non-equilibrium vacancy formation energies in metastable alloys—A case study of Ti0.5Al0.5N. Mater. Des. 2017, 114, 484–493. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miháliková, I.; Friák, M.; Koutná, N.; Holec, D.; Šob, M. An Ab Initio Study of Vacancies in Disordered Magnetic Systems: A Case Study of Fe-Rich Fe-Al Phases. Materials 2019, 12, 1430. https://doi.org/10.3390/ma12091430
Miháliková I, Friák M, Koutná N, Holec D, Šob M. An Ab Initio Study of Vacancies in Disordered Magnetic Systems: A Case Study of Fe-Rich Fe-Al Phases. Materials. 2019; 12(9):1430. https://doi.org/10.3390/ma12091430
Chicago/Turabian StyleMiháliková, Ivana, Martin Friák, Nikola Koutná, David Holec, and Mojmír Šob. 2019. "An Ab Initio Study of Vacancies in Disordered Magnetic Systems: A Case Study of Fe-Rich Fe-Al Phases" Materials 12, no. 9: 1430. https://doi.org/10.3390/ma12091430
APA StyleMiháliková, I., Friák, M., Koutná, N., Holec, D., & Šob, M. (2019). An Ab Initio Study of Vacancies in Disordered Magnetic Systems: A Case Study of Fe-Rich Fe-Al Phases. Materials, 12(9), 1430. https://doi.org/10.3390/ma12091430