Fire-Resistant Sandwich-Structured Composite Material Based on Alternative Materials and Its Physical and Mechanical Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Lattice
2.2. Adhesive Mixture Application
2.3. Pre-Pressing and Hot-Pressing
2.4. Geopolymer Application
- (1)
- inorganic, two-component, aluminosilicate binder based on metakaolin Cement Baucis Lk (České Lupkové Závody, a.s., Nové Strašecí, Czech Republic),
- (2)
- alkaline activator in liquid form Activator Baucis Lk (České Lupkové Závody, a.s., Nové Strašecí, Czech Republic),
- (3)
- anticorrosive powder additive for concrete and malt based on amorphous SiO2 Kema Mikrosilika (Kema Mikrosilika-sanační centrum s.r.o., Sviadnov Czech Republic),
- (4)
- basalt fibres Mineral wool Isover Uni—basalt fibres (Saint-Gobain Construction Product CZ a.s., Praha, Czech Republic),
- (5)
- aluminium powder with a purity of at least 99% and an average particle size of 65 µm Aluminium powder-Alpra—very fine, (PK Chemie, Třebíč Czech Republic). The geopolymer was manufactured according the methodology previously published in [8]. Two manufactured geopolymer density variants were selected; the percentage of all components in each variant is shown in Table 4.
2.5. Composite Material Properties Estimation
- —The minimum curve radius based on the basic bending equations.
- —The coefficient of bendability based on the basic bending equations.
- —The maximum deflection.
- —The distance between supports.
- h—The thickness of the sample.
- —The total thermal conductivity of the sandwich panel.
- —The total thickness of the sandwich panel.
- —The thickness of one layer in the sandwich panel.
- —The thermal conductivity of one layer in the sandwich panel.
- —The thermal resistance of one layer in the sandwich panel.
2.6. Statistical Analysis
- s—The sample standard deviation.
- x—The observed value.
- n—The number of observations.
- —The upper and lower limits of the confidence interval.
- s—The sample standard deviation.
- —The sample mean.
- n—The number of observations.
- —The percentile of the t distribution.
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Marcari, G.; Basili, M.; Vestroni, F. Experimental investigation of tuff masonry panels reinforced with surface bonded basalt textile-reinforced mortar. Compos. Part B 2017, 108, 131–142. [Google Scholar] [CrossRef]
- Raj, S.; Kumar, V.R.; Kumar, B.H.B.; Lyer, N.R. Basalt: Structural insight as a construction material. Sādhanā 2017, 42, 75–84. [Google Scholar]
- Sim, J.; Park, C.; Moon, D.J. Characteristics of basalt fiber as a strengthening material for concrete structures. Compos. Part B Eng. 2005, 36, 504–512. [Google Scholar] [CrossRef]
- Behera, P.; Baheti, V.; Militky, J.; Louda, P. Elevated temperature properties of basalt microfibril filled geopolymer composites. Constr. Build. Mater. 2018, 163, 850–860. [Google Scholar] [CrossRef]
- Di Ludovico, M.; Prota, A.; Manfredi, G. Structural upgrade using basalt fibers for concrete confinement. J. Compos. Constr. 2010, 14, 541–552. [Google Scholar] [CrossRef]
- Pernica, D.; Reis, P.N.B.; Ferreira, J.A.M.; Louda, P. Effect of test conditions on the bending strength of a geopolymer-reinforced composite. J. Mater. Sci. 2010, 45, 744–749. [Google Scholar] [CrossRef]
- Nguyen, T.X.; Louda, P.; Kroisova, D.; Kovacic, V.; Chi, H.L.; Vu, N.L. Effects of Commercial Fibers Reinforced on the Mechanical Properties of Geopolymer Mortar. Chemické Listy 2012, 106, 560–563. [Google Scholar]
- Le Chi, H.; Louda, P. Experimental Investigation of Four-Point Flexural Behavior of Textile Reinforcement in Geopolymer Mortar. Int. J. Eng. Technol. 2019, 11, 10–15. [Google Scholar] [CrossRef]
- Zheng, Y.Z.; Wang, W.W.; Brigham, J.C. Flexural behaviour of reinforced concrete beams strengthened with a composite reinforcement layer: BFRP grid and ECC. Constr. Build. Mater. 2016, 115, 424–437. [Google Scholar] [CrossRef] [Green Version]
- Mezrea, P.E.; Yilmaz, I.A.; Ispir, M.; Binbir, E. External Jacketing of Unreinforced Historical Masonry Piers with Open-Grid Basalt-Reinforced Mortar. J. Compos. Constr. 2017, 21, 4016110. [Google Scholar] [CrossRef]
- Ismail, N.; El-Maaddawy, T.; Khattak, N.; Najmal, A. In-Plane Shear Strength Improvement of Hollow Concrete Masonry Panels using a Fabric-Reinforced Cementitious Matrix. J. Compos. Constr. 2018, 22, 4018004. [Google Scholar] [CrossRef]
- Szczypinski, M.M.; Louda, P.; Exnar, P.; Le Chi, H.; Kovačič, V.; Van Su, L.; Voleský, L.; Bayhan, E.; Bakalova, T. Evaluation of mechanical properties of composite geopolymer blocks reinforced with basalt fibres. Manuf. Technol. 2018, 18, 861–865. [Google Scholar] [CrossRef]
- Eurostat. Agriculture, Forestry and Fishery Statistics; Publications Office of the European Union: Luxembourg, 2015. [Google Scholar]
- Klímek, P.; Wimmer, R. Alternative Raw Materials for Bio-Based Composites. In Proceedings of the International Conference Wood Science and Engineering in the Third Millennium, Brasov, Rumania, 2–4 November 2017. [Google Scholar]
- Haq, F.; Ali, H.; Shuaib, M.; Badshah, M.; Hassan, S.W.; Munis, M.F.H.; Chaudhary, H.J. Recent progress in bioethanol production from lignocellulosic materials: A review. Int. J. Green Energy 2016, 13, 1413–1441. [Google Scholar] [CrossRef]
- Hýsek, Š.; Gaff, M.; Sikora, A.; Babiak, M. New composite material based on winter rapeseed and his elasticity properties as a function of selected factors. Compos. Part B Eng. 2018, 153, 108–116. [Google Scholar] [CrossRef]
- Dukarska, D.; Czarnecki, R.; Dziurka, D.; Mirski, R. Construction particleboards made from rapeseed straw glued with hybrid pMDI/PF resin. Eur. J. Wood Wood Prod. 2017, 75, 175–184. [Google Scholar] [CrossRef]
- Gajdačová, P.; Hýsek, Š.; Jarský, V. Utilisation of winter rapeseed in wood based materials as a solution of wood shortage and forest protection. Bioresources 2018, 13, 2546–2561. [Google Scholar] [CrossRef]
- Timakul, P.; Rattanaprasit, W.; Aungkavattana, P. Improving compressive strength of fly ash-based geopolymer composites by basalt fibers addition. Ceram. Int. 2016, 42, 6288–6295. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, F.; Liu, M.; Hu, X. Novel sustainable geopolymer based syntactic foams: An eco-friendly alternative to polymer based syntactic foams. Chem. Eng. J. 2017, 313, 74–82. [Google Scholar] [CrossRef]
- Zhang, Z.; Provis, J.L.; Reid, A.; Wang, H. Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete. Cem. Concr. Compos. 2015, 62, 97–105. [Google Scholar] [CrossRef] [Green Version]
- Toniolo, N.; Boccaccini, A.R. Fly ash-based geopolymers containing added silicate waste. A review. Ceram. Int. 2017, 43, 14545–14551. [Google Scholar] [CrossRef]
- Velenturf, A.P.M.; Purnell, P.; Tregent, M.; Ferguson, J.; Holmes, A. Co-Producing a Vision and Approach for the Transition towards a Circular Economy: Perspectives from Government Partners. Sustainability 2018, 10, 1401. [Google Scholar] [CrossRef]
- Kidalova, L.; Stevulova, N.; Terpakova, E.; Sicakova, A. Utilization of alternative materials in lightweight composites. J. Clean. Prod. 2012, 34, 116–119. [Google Scholar] [CrossRef]
- Hýsek, Š.; Podlena, M.; Bartsch, H.; Wenderdel, C.; Böhm, M. Effect of wheat husk surface pre-treatment on the properties of husk-based composite materials. Ind. Crops Prod. 2018, 125, 105–113. [Google Scholar] [CrossRef]
- EN 323:1993—Wood-Based Panels. Determination of Density; Eur. Comm. for Stand.: Brussels, Belgium, 1993.
- EN 319:1993—Particleboards and Fibreboards. Determination of Tensile Strength Perpendicular to the Plane of the Board; Eur. Comm. for Stand.: Brussels, Belgium, 1993.
- EN 798:2004—Timber Structures—Test Methods—Determination of Mechanical Properties of Wood Based Panels; Eur. Comm. for Stand.: Brussels, Belgium, 2004.
- Gaff, M.; Vokatý, V.; Babiak, M.; Bal, B. Coefficient of wood bendability as a function of selected factors. Constr. Build. Mater. 2016, 126, 632–640. [Google Scholar] [CrossRef]
- Neuberger, P.; Kic, P. The use of unsteady method for determination of thermal conductivity of porous construction materials in real conditions. Agron. Res. 2017, 15, 1119–1126. [Google Scholar]
- EN 1363-2:1999—Fire Resistance Tests. Alternative and Additional Procedures; Eur. Comm. for Stand.: Brussels, Belgium, 1999.
- Wong, E.D.; Zhang, M.; Wang, Q.; Kawai, S. Formation of the density profile and its effects on the properties of particleboard. Wood Sci. Technol. 1999, 33, 327–340. [Google Scholar] [CrossRef]
- Hegazy, S.; Ahmed, K. Effect of Date Palm Cultivar, Particle Size, Panel Density and Hot Water Extraction on Particleboards Manufactured from Date Palm Fronds. Agricult 2015, 5, 267–285. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, D.M.; Grillet, A.C.; Diep, T.M.H.; Thuc, C.N.H.; Woloszyn, M. Hygrothermal properties of bio-insulation building materials based on bamboo fibers and bio-glues. Constr. Build. Mater. 2017, 155, 852–866. [Google Scholar] [CrossRef]
- Wong, E.D.; Yang, P.; Zhang, M.; Wang, Q.; Nakao, T.; Li, K.F.; Kawai, S. Analysis of the effects of density profile on the bending properties of particleboard using finite element method (FEM). Holz als Roh- und Werkstoff 2003, 61, 66–72. [Google Scholar] [CrossRef]
- Gaff, M.; Gašparík, M.; Borůvka, V.; Haviarová, E. Stress simulation in layered wood-based materials under mechanical loading. Mater. Des. 2015, 87, 1065–1071. [Google Scholar] [CrossRef]
- Gaff, M.; Hýsek, Š.; Sikora, A.; Babiak, M. Newly developed boards made from crushed rapeseed stalk and their bendability properties. BioResources 2018, 13, 4776–4794. [Google Scholar]
- Wong, E.D.; Zhang, M.; Wang, Q.; Kawai, S. Effects of mat moisture content and press closing speed on the formation of density profile and properties of particleboard. J. Wood Sci. 1998, 44, 287–295. [Google Scholar] [CrossRef]
- Asdrubali, F.; D’Alessandro, F.; Schiavoni, S. A review of unconventional sustainable building insulation materials. Sustain. Mater. Technol. 2015, 4, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Raji, S.; Jannot, Y.; Lagière, P.; Puiggali, J.R. Thermophysical characterization of a 377 laminated solid-wood pine wall. Constr. Build. Mater. 2009, 23, 3189–3195. [Google Scholar] [CrossRef]
- Kamseu, E.; Nait-Ali, B.; Bignozzi, M.C.; Leonelli, C.; Rossignol, S.; Smith, D.S. Bulk composition and microstructure dependence of effective thermal conductivity of porous inorganic polymer cements. J. Eur. Ceram. Soc. 2012, 32, 1593–1603. [Google Scholar] [CrossRef]
- Vickers, L.; Pan, Z.; Tao, Z.; van Riessen, A. In Situ Elevated Temperature Testing of Fly Ash Based Geopolymer Composites. Materials 2016, 9, 445. [Google Scholar] [CrossRef] [PubMed]
- Sakkas, K.; Sofianos, A.; Nomikos, P.; Panias, D. Behaviour of Passive Fire Protection K-Geopolymer under Successive Severe Fire Incidents. Materials 2015, 8, 6096–6104. [Google Scholar] [CrossRef] [Green Version]
Dimension (mm) | 0–0.25 | 0.25–0.5 | 0.5–0.8 | 0.8–1.6 | 1.6–2 | 2–3.15 | 3.15–8 |
Percentage (%) | 1.2 | 2.8 | 4.8 | 39.4 | 20.1 | 23.1 | 8.6 |
Phase No. | Thickness at the End (mm) | Moving Time (s) | Remaining Time (s) |
---|---|---|---|
1 | 40 | 0.1 | 0 |
2 | 18 | 3 | 0 |
3 | 11.8 | 8 | 12 |
4 | 12 | 5 | 10 |
5 | 12.3 | 3 | 0 |
6 | 12 | 3 | 141 |
7 | 12.5 | 25 | 0 |
8 | 500 | 0.1 | 0 |
Layer Specification | Fire-Resistant Sandwich-Structured Panel | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Board density (kg/m3) | 340 | 500 | ||||||||||
Geopolymer density (kg/m3) | 885 | 915 | 885 | 915 | ||||||||
Lattice count | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 |
Component | Percentage Share of Individual Components | |
---|---|---|
Geopolymer Density 885 kg/m3 | Geopolymer Density 915 kg/m3 | |
Cement Baucis Lk | 43.2% | 43.4% |
Activator Baucis Lk | 38.9% | 39.1% |
Kema Mikrosilika | 4.3% | 4.3% |
Mineral wool Isover | 13.0% | 13.0% |
Aluminium powder | 0.6% | 0.2% |
Sandwich Panel Combination | Board Density (kg/m3) | Geopolymer Density (kg/m3) | λ20/65 (W/(m·K)) |
---|---|---|---|
1 | 340 (18) | 885 (32) | 0.111 (0.009) |
2 | 340 (18) | 916 (28) | 0.113 (0.014) |
3 | 498 (17) | 885 (32) | 0.134 (0.008) |
4 | 498 (17) | 916 (28) | 0.214 (0.013) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hýsek, Š.; Frydrych, M.; Herclík, M.; Louda, P.; Fridrichová, L.; Le Van, S.; Le Chi, H. Fire-Resistant Sandwich-Structured Composite Material Based on Alternative Materials and Its Physical and Mechanical Properties. Materials 2019, 12, 1432. https://doi.org/10.3390/ma12091432
Hýsek Š, Frydrych M, Herclík M, Louda P, Fridrichová L, Le Van S, Le Chi H. Fire-Resistant Sandwich-Structured Composite Material Based on Alternative Materials and Its Physical and Mechanical Properties. Materials. 2019; 12(9):1432. https://doi.org/10.3390/ma12091432
Chicago/Turabian StyleHýsek, Štěpán, Miroslav Frydrych, Miroslav Herclík, Petr Louda, Ludmila Fridrichová, Su Le Van, and Hiep Le Chi. 2019. "Fire-Resistant Sandwich-Structured Composite Material Based on Alternative Materials and Its Physical and Mechanical Properties" Materials 12, no. 9: 1432. https://doi.org/10.3390/ma12091432
APA StyleHýsek, Š., Frydrych, M., Herclík, M., Louda, P., Fridrichová, L., Le Van, S., & Le Chi, H. (2019). Fire-Resistant Sandwich-Structured Composite Material Based on Alternative Materials and Its Physical and Mechanical Properties. Materials, 12(9), 1432. https://doi.org/10.3390/ma12091432