Synthesis of Metallic Nanocrystals: From Noble Metals to Base Metals
Abstract
:1. Introduction
2. Methods for Metallic Nanocrystal Synthesis
2.1. Typical Redox Process
2.2. Polyol Method
2.3. Crystal Growth
3. Synthesis of Noble Metal Nanocrystals
3.1. Au Nanocrystals
3.2. Ag Nanocrystals
3.3. Pd Nanocrystals
4. Synthesis of Multimetallic Nanocrystals
4.1. Significance of Multimetallic Nanocrystals
4.2. Synthesis Methods of Multimetallic Nanocrystals
4.3. Case Studies of Multimetallic Nanocrystals
5. Attempt of Base Metal Nanocrystal Synthesis
5.1. Base Metal and Their Nanocrystals
5.2. Synthesis Methods
5.3. Case Studies of Base Metals
6. Perspective Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Buzea, C.; Pacheco, I.; Robbie, K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 2007, 2, 17–71. [Google Scholar] [CrossRef]
- Roduner, E. Size matters: Why nanomaterials are different. Chem. Soc. Rev. 2006, 35, 583–592. [Google Scholar] [CrossRef]
- Jin, J.I. Significance of the international year of chemistry 2011. Chem. Asian J. 2011, 6, 8–10. [Google Scholar] [CrossRef] [PubMed]
- Murphy, C.J.J. Sustainability as an emerging design criterion in nanoparticle synthesis and applications. Mater. Chem. 2008, 18, 2173–2176. [Google Scholar] [CrossRef]
- Deng, K. Monodisperse Metal Bi Nanocrystals: Synthesis and Catalytic Performance. Master’s Thesis, Northwest University, Xi’an, China, 2017. [Google Scholar]
- Han, W.P. Introduction to Catalytic Chemistry, 1st ed.; Science Press: Beijing, China, 2003; pp. 1–2. [Google Scholar]
- Ashar, N.; Golwalkar, K. A Practical Guide to the Manufacture of Sulfuric Acid, Oleums, and Sulfonating Agents, 1st ed.; Springer: Mumbai, India, 2013; pp. 1–7. [Google Scholar]
- Zhang, L. Controlled Synthesis and Catalytic Activities of Metallic Nanocrystals. Ph.D. Thesis, University of Science and Technology of China, Hefei, China, 2017. [Google Scholar]
- Raney M, Method of Producing Finely-Divided Nickel. U.S. Patent 1628190A, 10 May 1927.
- Yang, X.F.; Wang, A.Q.; Qiao, B.T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748. [Google Scholar] [CrossRef]
- Hackett, S.F.J.; Brydson, R.M.; Gass, M.H. High-Activity, Single-Site Mesoporous Pd/Al2O3 catalysts for selective aerobic oxidation of allylic alcohols. Angew. Chem. Int. Ed. 2007, 46, 8593–8596. [Google Scholar] [CrossRef]
- Shao, M.H.; Peles, A.; Shoemaker, K. Electrocatalysis on platinum nanoparticles: Particle size effect on oxygen reduction reaction activity. Nano Lett. 2011, 11, 3714–3719. [Google Scholar] [CrossRef] [PubMed]
- Mao, J. Controllable Synthesis and Catalytic Study of Platinum- and Ruthenium-Based Nanocrystals. Ph.D. Thesis, Tsinghua University, Beijing, China, 2017. [Google Scholar]
- Liu, M.; Pang, Y.; Zhang, B.; De Luna, P.; Vosnyy, O.; Xu, J.; Zheng, X.; Dinh, C.T.; Fan, F.; Cao, C.; et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 2016, 537, 382–386. [Google Scholar] [CrossRef]
- Long, R.; Rao, Z.; Mao, K.; Li, Y.; Zhang, C.; Liu, Q.L.; Wang, C.M.; Li, Z.Y.; Wu, X.J.; Xiong, Y.J. Efficient coupling of solar energy to catalytic hydrogenation by using well-designed palladium nanostructures. Angew. Chem. Int. Ed. 2015, 54, 2425–2430. [Google Scholar] [CrossRef]
- Xu, R.; Wang, D.S.; Zhang, J.T.; Li, Y.D. Shape-dependent catalytic activity of silver nanoparticles for the oxidation of styrene. Chem. Asian J. 2006, 1, 888–893. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J. Phys. Chem. B 2000, 104, 1153–1175. [Google Scholar] [CrossRef]
- Sun, Y.; Xia, Y. Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, 298, 2176–2179. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Zheng, N. Surface and interface control of noble metal nanocrystals for catalytic and electrocatalytic applications. Nano Today 2013, 8, 168–197. [Google Scholar] [CrossRef]
- Serafin, J.G.; Liu, A.C. Seyedmonir S R, Surface science and the silver-catalyzed epoxidation of ethylene: An industrial perspective. J. Mol. Catal. A 1998, 131, 157–168. [Google Scholar] [CrossRef]
- Goia, D.V.; Matijevic, E. Preparation of monodispersed metal particles. New J. Chem. 1998, 22, 1203–1215. [Google Scholar] [CrossRef]
- Rodrigues, T.S.; Zhao, M.; Yang, T.H.; Gilroy, K.D.; Silva, A.G.M.; Camargo, P.H.C.; Xia, Y.N. Synthesis of colloidal metal nanocrystals: A comprehensive review on the reductants. Chem. Eur. J. 2018, 24, 16944–16963. [Google Scholar] [CrossRef]
- Weinberg, N.L.; Weinberg, H.R. Electrochemical oxidation of organic compounds. Chem. Rev. 1968, 68, 449–523. [Google Scholar] [CrossRef]
- Fivet, F.; Lagier, J.P.; Figlarz, M. Preparing monodisperse metal powders in micrometer and submicrometer sizes by the polyol process. MRS Bull. 1989, 14, 29–40. [Google Scholar] [CrossRef]
- Fievet, F.; Lagier, J.P.; Blin, B.; Beaudoin, B.; Figlarz, M. Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles. Solid State Ion. 1989, 32/33, 198–205. [Google Scholar] [CrossRef]
- Skrabalak, S.E.; Wiley, B.J.; Kim, M.; Formo, E.V.; Xia, Y. On the polyol synthesis of silver nanostructures: Glycolaldehyde as a reducing agent. Nano Lett. 2008, 8, 2077–2081. [Google Scholar] [CrossRef]
- Figlarz, M.; Fivet, F.; Lagier, J.P. Reduction of Metal Compounds to Metal Powders by Polyols. U.S. Patent 4539041, 20 December 1983. [Google Scholar]
- Wang, Y.; Herricks, T.; Xia, Y. Single crystalline nanowires of lead can be synthesized through thermal decomposition of lead acetate in ethylene glycol. Nano Lett. 2003, 3, 1163–1166. [Google Scholar] [CrossRef]
- Wiley, B.; Sun, Y.G.; Mayers, B.; Xia, Y.N. Shape-controlled synthesis of metal nanostructures: The case of silver. Chem. Eur. J. 2005, 11, 454–463. [Google Scholar] [CrossRef]
- Ducamp-Sanguesa, C.; Herrera-Urbina, R.; Figlarz, M. Synthesis and characterization of fine and monodisperse silver particles of uniform shape. J. Solid State Chem. 1992, 100, 272–280. [Google Scholar] [CrossRef]
- Lamer, V.K.; Dinegar, R.H. Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc. 1950, 72, 4847–4854. [Google Scholar] [CrossRef]
- Yuk, J.M.; Park, J.; Ercius, P. High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 2012, 336, 61–64. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Smith, R.K.; Jun, Y.W. Observation of single colloidal platinum nanocrystal growth trajectories. Science 2009, 324, 1309–1312. [Google Scholar] [CrossRef]
- Yao, T.; Sun, Z.H.; Li, Y. Insights into initial kinetic nucleation of gold nanocrystals. J. Am. Chem. Soc. 2010, 132, 7696–7701. [Google Scholar] [CrossRef]
- Liu, S.J.; Sun, Z.H.; Liu, Q.H. Unidirectional thermal diffusion in bimetallic Cu@Au nanoparticles. ACS Nano 2014, 8, 1886–1892. [Google Scholar] [CrossRef]
- Yao, T.; Liu, S.J.; Sun, Z.H. Probing nucleation pathways for morphological manipulation of platinum nanocrystals. J. Am. Chem. Soc. 2012, 134, 9410–9416. [Google Scholar] [CrossRef]
- Xia, Y.N.; Gilroy, K.D.; Peng, H.C.; Xia, X.H. Seed-mediated growth of colloidal metal nanocrystals. Angew. Chem. Int. Ed. 2017, 56, 60–95. [Google Scholar] [CrossRef]
- Scheel, H.J. Historical aspects of crystal growth technology. J. Cryst. Growth 2000, 211, 1–12. [Google Scholar] [CrossRef]
- Jana, N.R.; Gearheart, L.; Murphy, C.J. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. Chem. Commun. 2001, 617–618. [Google Scholar] [CrossRef]
- Jana, N.R.; Gearheart, L.; Murphy, C.J. Seeding growth for size control of 5 40 nm diameter gold nanoparticle. Langmuir 2001, 17, 6782–6786. [Google Scholar] [CrossRef]
- Burrows, N.D.; Vartanian, A.M.; Abadeer, N.S.; Grzincic, E.M.; Jacob, L.M.; Lin, W.; Li, J.; Dennison, J.M.; Hinman, J.G.; Murphy, C.J. Anisotropic nanoparticles and anisotropic surface chemistry. J. Phys. Chem. Lett. 2016, 7, 632–641. [Google Scholar] [CrossRef]
- Cheong, S.; Watt, J.; Ingham, B.; Toney, M.F.; Tilley, R.D. In situ and ex situ studies of platinum nanocrystals: Growth and evolution in solution. J. Am. Chem. Soc. 2009, 131, 14590–14595. [Google Scholar] [CrossRef]
- Lai, J.; Zhang, L.; Qi, W.; Zhao, J.; Xu, M.; Gao, W.; Xu, G. Facile synthesis of porous PtM (M=Cu, Ni) nanowires and their application as efficient electrocatalysts for methanol electrooxidation. ChemCatChem 2014, 6, 2253–2257. [Google Scholar] [CrossRef]
- Puntes, V.F.; Krishnan, K.M.; Alivisatos, A.P. Colloidal nanocrystal shape and size control: The case of cobalt. Science 2001, 291, 2115–2117. [Google Scholar] [CrossRef]
- Kim, F.; Connor, S.; Song, H.; Kuykendall, T.; Yang, P.D. Platonic gold nanocrystals. Angew. Chem. Int. Ed. 2004, 43, 3673–3677. [Google Scholar] [CrossRef]
- Xiong, Y.; Wiley, B.; Chen, Y.J.; Li, Z.Y.; Yin, Y.D.; Xia, Y.N. Corrosion-based synthesis of single-crystal Pd nanoboxes and nanocages and their surface plasmon properties. Angew. Chem. Int. Ed. 2005, 44, 7913–7917. [Google Scholar] [CrossRef]
- Lim, B.; Jiang, M.J.; Tao, J.; Camargo, P.H.C.; Zhu, Y.M.; Xia, Y.N. Shape-controlled synthesis of Pd nanocrystals in aqueous solutions. Adv. Funct. Mater. 2009, 19, 189–200. [Google Scholar] [CrossRef]
- Zheng, Y.Q.; Zhong, X.L.; Li, Z.Y.; Xia, Y.N. Successive, seed-mediated growth for the synthesis of single-crystal gold nanospheres with uniform diameters controlled in the range of 5–150 nm. Part. Part. Syst. Charact. 2014, 31, 266–273. [Google Scholar] [CrossRef]
- Sau, T.K.; Murphy, C.J. Room temperature, high-Yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J. Am. Chem. Soc. 2004, 126, 8648–8649. [Google Scholar] [CrossRef]
- Seo, D.; Park, J.C.; Song, H. Polyhedral gold nanocrystals with oh symmetry: From octahedra to cubes. J. Am. Chem. Soc. 2006, 128, 14863–14870. [Google Scholar] [CrossRef] [PubMed]
- Niu, W.X.; Zheng, S.L.; Wang, D.W.; Liu, X.Q.; Li, H.J.; Han, S.; Chen, J.; Tang, Z.Y.; Xu, G.B. Selective Synthesis of Single-Crystalline Rhombic Dodecahedral, Octahedral, and Cubic Gold Nanocrystals. J. Am. Chem. Soc. 2009, 131, 697–703. [Google Scholar] [CrossRef]
- Wu, H.L.; Kuo, C.H.; Huang, M.H. Seed-mediated synthesis of gold nanocrystals with systematic shape evolution from cubic to trisoctahedral and rhombic dodecahedral structures. Langmuir 2010, 26, 12307–12313. [Google Scholar] [CrossRef]
- Jana, N.R.; Gearheart, L.; Murphy, C.J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J. Phys. Chem. B 2001, 105, 4065–4067. [Google Scholar] [CrossRef]
- Seo, D.H.; Yoo, C.; Chung, I.S.; Park, S.M.; Ryu, S.; Song, H.J. Shape adjustment between multiply twinned and single-crystalline polyhedral gold nanocrystals: Decahedra, icosahedra, and truncated tetrahedra. J. Phys. Chem. C 2008, 112, 2469–2475. [Google Scholar] [CrossRef]
- Li, W.G.; Xia, Y.N. Facile synthesis of gold octahedra by direct reduction of HAuCl4 in an aqueous solution. Chem. Asian J. 2010, 5, 1312–1316. [Google Scholar]
- Sánchez-Iglesias, A.; Pastoriza-Santos, I.; Pérez-Juste, J.; Rodríguez-González, B.; Abajo, F.; Liz-Marzán, L. Synthesis and optical properties of gold nanodecahedra with size control. Adv. Mater. 2006, 18, 2529–2534. [Google Scholar] [CrossRef]
- Zheng, Y.; Tao, Q.J.; Liu, H.Y.; Zeng, J.; Yu, T.; Ma, Y.Y.; Moran, C.; Wu, L.J.; Zhu, Y.M.; Liu, J.Y.; et al. Facile synthesis of gold nanorice enclosed by highIndex facets and its application for CO oxidation. Small 2011, 7, 2307–2312. [Google Scholar] [CrossRef]
- Millstone, J.E.; Park, S.; Shuford, K.L.; Qin, L.D.; Schatz, G.C.; Mirkin, C.A. Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms. J. Am. Chem. Soc. 2005, 127, 5312–5313. [Google Scholar] [CrossRef]
- Zhang, J.; Langille, M.R.; Personick, M.L.; Zhang, K.; Li, S.Y.; Mirkin, C.A. Concave cubic gold nanocrystals with high-index facets. J. Am. Chem. Soc. 2010, 132, 14012–14014. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.Y.; Kuang, Q.; Jiang, Z.Y.; Xie, Z.X.; Huang, R.B.; Zheng, L.S. Synthesis of trisoctahedral gold nanocrystals with exposed high index facets by a facile chemical method. Angew. Chem. Int. Ed. 2008, 47, 8901–8904. [Google Scholar] [CrossRef]
- Ming, T.; Feng, W.; Tang, Q.; Wang, F.; Sun, L.D.; Wang, J.F.; Yan, C.H. Growth of tetrahexahedral gold nanocrystals with high-index facets. J. Am. Chem. Soc. 2009, 131, 16350–16351. [Google Scholar] [CrossRef] [PubMed]
- Heinglein, A. Physicochemical properties of small metal particles in solution: “Microelectrode” reactions, chemisorption, composite metal particles, and the atom-to-metal transition. J. Phys. Chem. 1993, 97, 5457–5471. [Google Scholar] [CrossRef]
- Heard, S.M.; Grieser, F.; Barraclough, C.G.; Sanders, J.V. The characterization of ag sols by electron microscopy, optical absorption, and electrophoresis. J. Colloid Interface Sci. 1983, 93, 545–555. [Google Scholar] [CrossRef]
- Sun, Y.; Mayers, B.; Xia, Y. Transformation of silver nanospheres into nanobelts and triangular Nanoplates through a thermal process. Nano Lett. 2003, 3, 675–679. [Google Scholar] [CrossRef]
- Yu, D.; Yam, V. Controlled synthesis of monodisperse silver nanocubes in water. J. Am. Chem. Soc. 2004, 126, 13200–13201. [Google Scholar] [CrossRef]
- Yu, D.; Yam, V. Hydrothermal-induced assembly of colloidal silver spheres into various nanoparticles on the basis of HTAB-modified silver mirror reaction. J. Phys. Chem. B 2005, 109, 5497–5503. [Google Scholar] [CrossRef]
- Lai, J.P.; Niu, W.X.; Luquea, R.; Xu, G.B. Solvothermal synthesis of metal nanocrystals and their applications. Nano Today 2015, 10, 240–267. [Google Scholar] [CrossRef]
- Allpress, J.G.; Sanders, J.V. The structure and orientation of crystals in deposits of metals on micas. Surf. Sci. 1967, 7, 1–25. [Google Scholar] [CrossRef]
- Xiong, Y.; Chen, J.; Wiley, B.; Xia, Y.N.; Aloni, S.; Yin, Y.D. Understanding the role of oxidative etching in the polyol synthesis of Pd Nnanoparticles with uniform shape and size. J. Am. Chem. Soc. 2005, 127, 7332–7333. [Google Scholar] [CrossRef]
- Xiong, Y.; Chen, J.; Wiley, B.; Xia, Y.N.; Yin, Y.; Li, Z.Y. Size-dependence of surface plasmon resonance and oxidation for Pd nanocubes synthesized via a seed etching process. Nano Lett. 2005, 5, 1237–1242. [Google Scholar] [CrossRef]
- Xiong, Y.; Cai, H.; Wiley, B.; Wang, J.; Kim, M.J.; Xia, Y.N. Synthesis and mechanistic study of palladium nanobars and nanorods. J. Am. Chem. Soc. 2007, 129, 3665–3675. [Google Scholar] [CrossRef]
- Niu, Z.Q.; Peng, Q.; Gong, M.; Rong, H.P.; Li, Y.D. Oleylamine-mediated shape evolution of palladium nanocrystals. Angew. Chem. Int. Ed. 2011, 123, 6439–6443. [Google Scholar] [CrossRef]
- Ling, T.; Zhu, J.; Yu, H.M.; Xie, L. Size effect on crystal morphology of faceted face-centered cubic Fe nanoparticles. J. Phys. Chem. C 2009, 113, 9450–9453. [Google Scholar] [CrossRef]
- Lim, B.; Xiong, Y.J.; Xia, Y.N. A water-based synthesis of octahedral, decahedral, and icosahedral Pd nanocrystals. Angew. Chem. Int. Ed. 2007, 119, 9439–9442. [Google Scholar] [CrossRef]
- Wang, Y.; Choi, S.; Zhao, X.; Xie, S.F.; Peng, H.C.; Chi, M.F.; Huang, C.Z.; Xia, Y.N. Polyol synthesis of ultrathin Pd nanowires via attachmentbased growth and their enhanced activity towards formic acid oxidation. Adv. Funct. Mater. 2014, 24, 131–139. [Google Scholar] [CrossRef]
- Zhang, H.; Xia, X.H.; Li, W.Y.; Zeng, J.; Dai, Y.Q.; Yang, D.R.; Xia, Y.N. Facile synthesis of five-fold twinned, starfish-like rhodium nanocrystals by eliminating oxidative etching with a chloride-free precursor. Angew. Chem. Int. Ed. 2010, 122, 5424–5428. [Google Scholar] [CrossRef]
- Zettsu, N.; McLellan, J.M.; Wiley, B.; Yin, Y.D.; Li, Z.Y.; Xia, Y.N. Synthesis, stability, and surface plasmonic properties of rhodium multipods, and their use as substrates for surface-enhanced raman scattering. Angew. Chem. Int. Ed. 2006, 118, 1310–1314. [Google Scholar] [CrossRef]
- Kusada, K.; Kobayashi, H.; Yamamoto, T.; Matsumura, S.; Sumi, N.; Sato, K.; Nagaoka, K.; Kubota, Y.; Kitagawa, H. Discovery of face-centered-cubic ruthenium nanoparticles: Facile size-controlled synthesis using the chemical reduction method. J. Am. Chem. Soc. 2013, 135, 5493–5496. [Google Scholar] [CrossRef]
- Sinfelt, J.H.; Carter, J.L.; Yates, D.J.C. Catalytic hydrogenolysis and dehydrogenation over copper-nickel alloys. J. Catal. 1972, 24, 283–296. [Google Scholar] [CrossRef]
- Sinfelt, J.H. Supported “bimetallic cluster” catalysts. J. Catal. 1973, 29, 308–315. [Google Scholar] [CrossRef]
- Jiang, T.; Huai, Q.; Geng, T. Catalytic performance of Pd–Ni bimetallic catalyst for glycerol hydrogenolysis. Biomass Bioenergy 2015, 78, 71–79. [Google Scholar] [CrossRef]
- Fu, Q.; Li, W.X.; Yao, Y. Interface-confined ferrous centers for catalytic oxidation. Science 2010, 328, 1141–1144. [Google Scholar] [CrossRef]
- Wang, W. Ultrafine Metal Nanocrystals, Metal Clusters: Synthesis and Their Catalytic Properties. Ph.D. Thesis, Tsinghua University, Beijing, China, 2016. [Google Scholar]
- Gasteiger, H.A.; Kocha, S.S.; Sompalli, B. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B Environ. 2005, 56, 9–35. [Google Scholar] [CrossRef]
- Bruijn, F.A.; Dam, V.A.T.; Janssen, G.J.M. Review: Durability and degradation issues of PEM fuel cell components. Fuel Cells 2008, 8, 3–22. [Google Scholar] [CrossRef]
- Greeley, J.; Stephens, I.E.L.; Bondarenko, A.S. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 2009, 1, 552–556. [Google Scholar] [CrossRef] [PubMed]
- Gasteiger, H.A.; Markovi, N.M. Just a dream or future reality? Science 2009, 324, 48–49. [Google Scholar] [CrossRef] [PubMed]
- Stamenkovic, V.R.; Mun, B.S.; Arenz, M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 2007, 6, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Stamenkovic, V.R.; Fowler, B.; Mun, B.S. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007, 315, 493–497. [Google Scholar] [CrossRef] [PubMed]
- Arico, A.S.; Bruce, P.; Scrosati, B. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377. [Google Scholar] [CrossRef]
- Chen, C.; Kang, Y.; Huo, Z. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343. [Google Scholar] [CrossRef]
- Huang, X.; Zhao, Z.; Cao, L. High-performance transition metal–doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230–1234. [Google Scholar] [CrossRef] [PubMed]
- Lv, J. Controlled Synthesis of Palladiumbased Bimetallic Nanomaterials and Their Electrocatalysis Research. Ph.D. Thesis, Zhejiang Normal University, Jinhua, China, 2015. [Google Scholar]
- Mazumder, V.; Lee, Y.; Sun, S. Recent development of active nanoparticle catalysts for fuel cell reactions. Adv. Funct. Mater. 2010, 20, 1224–1231. [Google Scholar] [CrossRef]
- Qiao, Y.; Li, C.M. Nanostructured catalysts in fuel cells. J. Mater. Chem. 2011, 21, 4027–4036. [Google Scholar] [CrossRef]
- Yun, S.; Oh, M.K.; Kim, S.K. Linker-molecule-free gold nanorod films: Effect of nanorod size on surface enhanced Raman scattering. J. Phys. Chem. C 2009, 113, 13551–13557. [Google Scholar] [CrossRef]
- Lim, B.; Jiang, M.; Camargo, P.H.C. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 2009, 324, 1302–1305. [Google Scholar] [CrossRef]
- Xiao, J.; Qi, L. Surfactant-assisted shape-controlled synthesis of gold nanocrystals. Nanoscale 2011, 3, 1383–1396. [Google Scholar] [CrossRef]
- Zhang, L.F.; Zhong, S.L.; Xu, A.W. Highly branched concave Au/Pd bimetallic activity and highly efficient SERS enhancement. Angew. Chem. Int. Ed. 2013, 52, 645–649. [Google Scholar] [CrossRef]
- Sourov, G.; Ranjan, K.S.; Raj, C.R. Pt-Pd alloy nanoparticle-decorated carbon nanotubes: A durable and methanol tolerant oxygen reduction electrocatalyst. Nanotechnology 2012, 23, 385602–385610. [Google Scholar]
- Forde, M.M.; Kesavan, I.; Saiman, M.I. High activity redox catalysts synthesized by chemical vapor impregnation. ACS Nano 2014, 8, 957–969. [Google Scholar] [CrossRef] [PubMed]
- Gong, M.; Fu, G.; Chen, Y. Autocatalysis and selective oxidative etching induced synthesis of platinum-copper bimetallic alloy nanodendrites. ACS Appl. Mat. Interfaces 2014, 6, 7301–7308. [Google Scholar] [CrossRef]
- Shi, Z.Y.; Wang, C.W.; Xu, G. Porous palladium copper nanoparticles for the electrocatalytic oxidation of methanol in direct methanol fuel cells. J. Mater. Chem. A 2013, 1, 4773–4778. [Google Scholar] [CrossRef]
- Wang, L.; Yamauchi, Y. Metallic nanocages: Synthesis of bimetallic Pt-Pd hollow nanoparticles with dendritic shells by selective chemical etching. J. Am. Chem. Soc. 2013, 135, 16762–16765. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.F.; Wang, D.S.; Peng, Q.; Li, Y.D. PtM (M=Cu, Co, Ni, Fe) nanocrystals: From small nanoparticles to wormlike nanowires by oriented attachment. Chem. Eur. J. 2013, 19, 233–239. [Google Scholar] [CrossRef]
- Wu, Y.E.; Wang, D.S.; Niu, Z.Q.; Chen, P.C.; Zhou, G.; Li, Y.D. A strategy for designing a concave Pt-Ni alloy through controllable chemical etching. Angew. Chem. Int. Ed. 2012, 124, 12692–12696. [Google Scholar] [CrossRef]
- Chao, T.T.; Luo, X.; Chen, W.X. Atomically dispersed copper-platinum dual sites alloyed with palladium nanorings catalyze the hydrogen evolution reaction. Angew. Chem. Int. Ed. 2017, 56, 16047–16051. [Google Scholar] [CrossRef]
- Lim, B.; Wang, J.G.; Camargo, P.H.C.; Cobley, C.M.; Kim, M.J.; Xia, Y.N. Twin-induced growth of palladium–platinum alloy nanocrystals. Angew. Chem. Int. Ed. 2009, 121, 6422–6426. [Google Scholar] [CrossRef]
- Zhang, L.; Choi, S.; Tao, J.; Xie, S.F.; Zhu, Y.M.; Xie, Z.X.; Xia, Y.N. Pd-Cu bimetallic tripods: A mechanistic understanding of the synthesis and their enhanced electrocatalytic activity for formic acid oxidation. Adv. Funct. Mater. 2014, 24, 7520–7529. [Google Scholar] [CrossRef]
- Xie, S.F.; Jin, M.S.; Tao, J.; Wang, Y.C.; Xie, Z.X.; Zhu, Y.M.; Xia, Y.N. Synthesis and Characterization of Pd@MxCu1-x (M=Au, Pd, and Pt) nanocages with porous walls and a yolk-shell structure through galvanic replacement reactions. Chem. Eur. J. 2012, 18, 14974–14980. [Google Scholar] [CrossRef]
- Xie, S.F.; Lu, N.; Xie, Z.X.; Wang, J.G.; Kim, M.J.; Xia, Y.N. Synthesis of Pd-Rh core-frame concave nanocubes and their conversion to Rh cubic nanoframes by selective etching of the Pd cores. Angew. Chem. Int. Ed. 2012, 124, 10412–10416. [Google Scholar] [CrossRef]
- Chen, W.; Yu, R.; Li, L.L.; Wang, A.N.; Peng, Q.; Li, Y.D. A Seed-based diffusion route to monodisperse intermetallic CuAu nanocrystals. Angew. Chem. Int. Ed. 2010, 122, 2979–2983. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, S.; Lian, C.; Liu, Y.X.; Wang, D.S.; Chen, C.; Peng, Q.; Li, Y.D. Nano PdAu bimetallic alloy as an effective catalyst for the Buchwald-Hartwig reaction. Chem. Asian J. 2016, 11, 351–355. [Google Scholar] [CrossRef]
- Zeng, J.; Huang, J.L.; Liu, C.; Wu, C.H.; Lin, Y.; Wang, X.P.; Zhang, S.Y.; Hou, J.G.; Xia, Y.N. Gold-based hybrid nanocrystals through heterogeneous nucleation and growth. Adv. Mater. 2010, 22, 1936–1940. [Google Scholar] [CrossRef]
- He, G.N.; Zeng, J.; Jin, M.S.; Zhang, H.; Lu, N.; Wang, J.G.; Kim, M.J.; Xia, Y.N. A mechanistic study on the nucleation and growth of Au on Pd seeds with a cubic or octahedral shape. ChemCatChem 2012, 4, 1668–1674. [Google Scholar] [CrossRef]
- Li, J.; Zheng, Y.Q.; Zeng, J.; Xia, Y.N. Controlling the size and morphology of Au@Pd core-shell nanocrystals by manipulating the kinetics of seeded growth. Chem. Eur. J. 2012, 18, 8150–8156. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Zhu, C.; Tao, J.; Jin, M.S.; Zhang, H.; Li, Z.Y.; Zhu, Y.M.; Xia, Y.N. Controlling the nucleation and growth of silver on palladium nanocubes by manipulating the reaction kinetics. Angew. Chem. Int. Ed. 2012, 124, 2404–2408. [Google Scholar] [CrossRef]
- Yang, M.X.; Gilroy, K.D.; Xia, Y.N. A general approach to the synthesis of M@Au/Ag (M = Au, Pd, and Pt) nanorattles with ultrathin shells less than 2.5 nm thick. Part. Part. Syst. Charact. 2017, 34, 1600279. [Google Scholar] [CrossRef]
- Zhang, X. Rational design of non-PGM ORR electro-catalyst and exploration on ORR pathway. Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, 2018. [Google Scholar]
- Sun, X.C.; Dong, X.L. Magnetic properties and microstructure of carbon encapsulated Ni nanoparticles and pure Ni nanoparticles coated with NiO layer. Mater. Res. Bull. 2002, 37, 991–1004. [Google Scholar] [CrossRef]
- Guo, G.Y.; Wang, H.H. Gradient-corrected density functional calculation of elastic constants of Fe, Co and Ni in bcc, fcc and hcp structures. Chin. J. Phys. 2000, 38, 949–961. [Google Scholar]
- Hinotsu, T.; Jeyadevan, B.; Chinnasamy, C.N. Size and structure control of magnetic nanoparticles by using a modified polyolprocess. J. Appl. Phys. 2004, 95, 7477–7479. [Google Scholar] [CrossRef]
- Tzitzios, V.; Basina, G.; Gjoka, M. Chamical synthesis and characterization of hcp Ni nanoparticles. Nanotechnology 2006, 17, 3750–3755. [Google Scholar] [CrossRef]
- Zheng, W.T.; Sun, C.Q. Electronic process of nitridation: Mechanism and applications. Prog. Solid State Chem. 2006, 34, 1–20. [Google Scholar] [CrossRef]
- Gong, J.; Wang, L.L.; Liu, Y.; Yang, J.H.; Zong, J.G. Structural and magnetic properties of hcp and fcc Ni nanoparticles. J. Alloys Compd. 2008, 457, 6–9. [Google Scholar] [CrossRef]
- Jeon, Y.T.; Moon, J.Y.; Lee, G.H.; Park, J.; Chang, Y. Comparison of the magnetic properties of metastable hexagonal close-packed Ni nanoparticles with those of the stable face-centered cubic Ni nanoparticles. J. Phys. Chem. B 2006, 110, 1187–1191. [Google Scholar] [CrossRef]
- Tehrani, R.M.A.; Ghani, S.A. The hexagonal close-packed nickel nanocrystals prepared by fast scan voltammetry. J. Colloid Interface Sci. 2009, 339, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Wan, H.L.; Cai, Q.R. Some aspects of structural chemistry in catalysis. Struct. Chem. 1989, 8, 349–356. [Google Scholar]
- Chen, Y.X.; Chen, S.P.; Zhou, Z.Y. Tuning the shape and catalytic activity of Fe nanocrystals from rhombic dodecahedra and tetragonal bipyramids to cubes by electrochemistry. J. Am. Chem. Soc. 2009, 131, 10860–10862. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Sui, Y.; Xiao, G. Facile fabrication of faceted copper nanocrystals with high catalytic activity for p-nitrophenol reduction. J. Mater. Chem. A 2012, 1, 1632–1638. [Google Scholar] [CrossRef]
- Liu, X.; Sui, Y.; Yang, X. An envoronmentally friendly route to synthesize Cu micro/nano materials with “sustainable oxidation resistance” and promising catalytic performance. RSC Adv. 2016, 6, 35035–35043. [Google Scholar]
- Rycenga, M.; Cobley, C.; Zeng, J. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 2011, 111, 3669–3712. [Google Scholar] [CrossRef]
- Perelaer, J.; Smith, P.J.; Mager, D.; Soltman, D.; Volkman, S.K.; Subramanian, V.; Korvink, J.G.; Schubert, U.S. Printed electronics. J. Mater. Chem. 2010, 20, 8446–8453. [Google Scholar] [CrossRef]
- Keiski, R.; Desponds, O.; Chang, Y.; Somorjai, G.A. Kinetics of the water-gas shift reaction over several alkane activation and water-gas shift catalysts. Appl. Catal. A 1993, 101, 317–338. [Google Scholar] [CrossRef]
- Gokhale, A.; Dumesic, J.; Mavrikakis, M. On the Mechanism of Low-Temperature Water Gas Shift Reaction on Copper. J. Am. Chem. Soc. 2008, 130, 1402–1414. [Google Scholar] [CrossRef]
- Vukojevic, S.; Trapp, O.; Grunwaldt, J.; Kiener, C.; Schüth, F. Quasi-homogeneous methanol synthesis over highly active copper nanoparticles. Angew. Chem. 2005, 117, 8192–8195. [Google Scholar] [CrossRef]
- Jin, M.S.; He, G.N.; Zhang, H.; Zeng, J.; Xie, Z.X.; Xia, Y.N. Shape-Controlled Synthesis of Copper Nanocrystals in an Aqueous Solution with Glucose as a Reducing Agent and Hexadecylamine as a Capping Agent. Angew. Chem. Int. Ed. 2011, 50, 10560–10564. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Fei, G.; Ouyang, H.; Zhang, Y.; Huo, P.; Zhang, L. Controllable fabrication of nickel nanoparticle chains based on electrochemical corrosion. J. Mater. Chem. C 2015, 3, 2072–2079. [Google Scholar] [CrossRef]
- Brosseau, C.; Talbot, P. Effective magnetic permeability of Ni and Co micro- and nanoparticles embedded in a ZnO matrix. J. Appl. Phys. 2005, 97, 104325. [Google Scholar] [CrossRef]
- Zhang, G.; Zhao, L. Study on the morphologies of nickel crystals and their magnetic properties. Mater. Lett. 2012, 79, 142–144. [Google Scholar] [CrossRef]
- Pu, B.X.; Wang, L.P.; Guo, H.; Yang, J.; Chen, H.Y.; Zhou, Y.J.; Yang, J.; Zhao, B.; Niu, X.B. Influence of PEG stoichiometry on structure-tuned formation of self-assembled submicron nickel particles. Materials 2018, 11, 222. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhu, Q.S.; Zhang, H.G. Selected-control synthesis of hierarchical nickel structures. Mater. Res. Bull. 2007, 42, 1450–1456. [Google Scholar] [CrossRef]
- Jiang, X.X.; Shen, W. The Fundamentals and Practice of Electroless Plating, 3rd ed.; National Defense Industry Press: Beijing, China, 2000; pp. 8–24. [Google Scholar]
- Bao, J.; Liang, Y.; Xu, Z.; Si, L. Facile synthesis of hollow nickel submicrometer spheres. Adv. Mater. 2003, 15, 1832–1835. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, H.; Han, M.; Zhu, J.; Liang, Y.; Xu, Z.; Song, Y. Nanometer-sized nickel hollow spheres. Adv. Mater. 2005, 17, 1995–1999. [Google Scholar] [CrossRef]
- Liu, Z.P.; Li, S.; Yang, Y.; Peng, S.; Hu, Z.K.; Qian, Y.T. Complex-surfactant-assisted hydrothermal route to ferromagnetic nickel nanobelts. Adv. Mater. 2003, 15, 1946–1948. [Google Scholar] [CrossRef]
- Kim, K.H.; Lee, Y.B.; Lee, S.G.; Park, H.C.; Park, S.S. Preparation of fine nickel powders in aqueous solution under wet chemical process. Mater. Sci. Eng. A 2004, 381, 337–342. [Google Scholar] [CrossRef]
- Zhou, Y.; Jin, S.M.; Qiu, G.Z.; Yang, M. Preparation of ultrafine nickel powder by polyol method and its oxidation product. Mater. Sci. Eng. B 2005, 122, 222–225. [Google Scholar]
- Kim, K.H.; Lee, Y.B.; Choi, E.Y.; Park, H.C.; Park, S.S. Synthesis of nickel powders from various aqueous media through chemical reduction method. Mater. Chem. Phys. 2004, 86, 420–424. [Google Scholar] [CrossRef]
- Park, J.W.; Chae, E.H.; Kim, S.H.; Lee, J.H.; Kim, J.W.; Yoon, S.M.; Choi, J.Y. Preparation of fine Ni powders from nickel hydrazine complex. Mater. Chem. Phys. 2006, 97, 371–378. [Google Scholar] [CrossRef]
- Liang, H.Z. Preparation of ultrafine nickel powder by hydrothermal reduction of Ni(OH)2 slurry catalyzed by anthraquinone. Chin. J. Chem. Metall. 1995, 16, 307–311. [Google Scholar]
- Xu, J.; Yu, K.N.; Liang, H.Z.; Tao, C.Y.; Li, S.H.; Jin, D.Z.; Zheng, X.S. Preparation of nanometer-sized nickel powders by hydrothermal hydrogen reduction of Ni(OH)2 slurry. Chin. J. Mater. Res. 2002, 16, 158–163. [Google Scholar]
- Degen, A.; Macek, J. Preparation of Submicrometer Nickel Powders by the Reduction from Nonaqueous Media. Nanosructured Mater. 1999, 12, 225–228. [Google Scholar] [CrossRef]
- Wu, S.H.; Chen, D.H. Synthesis and Characterization of Nickel Nanoparticles by Hydrazine Reduction in Ethylene Glycol. J. Colloid Interface Sci. 2003, 259, 282–286. [Google Scholar] [CrossRef]
- Chen, R.Y.; Zhou, K.G. Preparation of ultrafine nickel powder by wet chemical process. Trans. Nonferr. Met. Soc. China 2006, 1223–1227. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, Z.T.; Zhao, B.; Zhu, Y.Z.; Hu, L.M.; Dai, M.J. Preparation of spherical ultrafine nickel powder by polymer solution reduction protection. Chem. Bull. 1996, 59, 41–42. [Google Scholar]
- Kim, K.H.; Park, H.C.; Lee, S.D.; Hwa, W.J.; Hong, S.S.; Lee, G.D.; Park, S.S. Preparation of submicron nickel powders by microwave-assisted hydrothermal method. Mater. Chem. Phys. 2005, 92, 234–239. [Google Scholar] [CrossRef]
- Shin, Y.; Bae, I.T.; Arey, B.W.; Exarhos, G.J. Simple preparation and stabilization of nickel nanocrystals on cellulose nanocrystal. Mater. Lett. 2007, 61, 3215–3217. [Google Scholar] [CrossRef]
- Winnischofer, H.; Rocha, T.; Nunes, W.C.; Socolovsky, L.M.; Knobel, M.; Zanchet, D. Chemical synthesis and structural characterization of highly disordered Ni colloidal nanoparticles. ACS Nano 2008, 2, 1313–1319. [Google Scholar] [CrossRef]
- Peng, B.; Zhang, X.; Aarts, D.G.A.L.; Dullens, R.P.A. Superparamagnetic nickel colloidal nanocrystal clusters with antibacterial activity and bacteria binding ability. Nat. Nanotechnol. 2018, 13, 478–482. [Google Scholar] [CrossRef]
- Gao, Y.; Zhao, J.Z.; Zhou, Z.; Zhu, Y.; Wang, Z. Aqueous synthesis of flower-like nickel nanostructures under the induction of magnetic field. Colloids Surf. A Physicochem. Eng. Asp. 2010, 368, 137–141. [Google Scholar] [CrossRef]
- Li, M.; Chen, Y.; Ji, N.; Zeng, D.; Peng, D. Preparation of monodisperse Ni nanoparticles and their assembly into 3D nanoparticle superlattices. Mater. Chem. Phys. 2014, 147, 604–610. [Google Scholar] [CrossRef]
- Guo, H.; Pu, B.; Chen, H.; Yang, J.; Zhou, Y.; Yang, J.; Bismark, B.; Li, H.; Niu, X. Surfactant-assisted solvothermal synthesis of pure nickel submicron spheres with microwave-absorbing properties. Nanoscale Res. Lett. 2016, 11, 352–368. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.Y.; Zhang, H.B.; Jin, H.C.; Yuan, F.L. Synthesis of nickel powders: From spheres to monodispersed clusters. J. Clust. Sci. 2012, 23, 357–364. [Google Scholar] [CrossRef]
- Bai, L.Y.; Yuan, F.L.; Tang, Q.; Li, J.L.; Ryu, H. Preparation of well-dispersed spherical nickel powders with uniform size via mild solvothermal route. J. Mater. Sci. 2008, 43, 1769–1775. [Google Scholar] [CrossRef]
- Bai, L.Y.; Yuan, F.L.; Tang, Q. Synthesis of nickel nanoparticles with uniform size via a modified hydrazine reduction route. Mater. Lett. 2008, 62, 2267–2270. [Google Scholar] [CrossRef]
- Bai, L.Y.; Fan, J.M.; Cao, Y.B.; Yuan, F.L.; Zuo, A.H.; Tang, Q. Shape-controlled synthesis of Ni particles via polyol reduction. J. Cryst. Growth 2009, 311, 2474–2479. [Google Scholar] [CrossRef]
- Zeng, C.; Wang, C.; Wang, F.; Zhang, Y.; Zhang, L. A novel vapor-liquid segmented flow based on solvent partial vaporization in microstructured reactor for continuous synthesis of nickel nanoparticles. Chem. Eng. J. 2012, 204–206, 48–53. [Google Scholar] [CrossRef]
- Wu, D.; Tan, Q.; Hu, L. Shape-controlled synthesis of Cu-Ni nanocrystals. Mater. Chem. Phys. 2018, 206, 150–157. [Google Scholar] [CrossRef]
Metal Species | Reduction Reaction | E0(V) |
---|---|---|
Au | Au3+ + 3e− = Au0 | +1.50 |
Pt | Pt2+ + 2e− = Pt0 | +1.18 |
Ir | Ir3+ + 3e− = Ir0 | +1.16 |
Pd | Pd2+ + 2e− = Pd0 | +0.95 |
Ag | Ag+ + e− = Ag0 | +0.80 |
Rh | Rh3+ + 3e− = Rh0 | +0.76 |
Cu | Cu2+ + 2e− = Cu0 | +0.34 |
Ni | Ni2+ + 2e− = Ni0 | −0.25 |
Co | Co2+ + 2e− = Co0 | −0.28 |
Reductant Species | Oxidation Reaction | E0(V) |
---|---|---|
H2 | H2 = 2H+ + 2e− | 0.000 |
N2H4·H2O (acidic) | N2H5+ = N2 + 5H+ + 4e− | 0.230 |
N2H4·H2O (basic) | N2H4 + 4OH− = N2 + 4H2O + 4e− | 1.160 |
NaBH4 | BH4− + 3H2O = B(OH)3 + 7H+ +8e− | 0.481 |
NaH2PO2 | H2PO2−+H2O = H2PO3− + 2H+ + 2e− | 0.500 |
Na3C6H5O7·2H2O | C6H5O73− + 2H2O = 3CH2O + 3CO2 + 3H+ + 6e− | 1.271 |
H2O2 | H2O2 = O2 + 2H+ + 2e− | 0.680 |
CH3OH | CH3OH = CH2O + 2H+ + 2e− | 0.180 |
CH3CH2OH | CH3CH2OH = CH3CHO + 2H+ + 2e− | 0.197 |
CH3CHO | CH3CHO + H2O = CH3COOH + 2H+ + 2e− | 0.390 |
C6H8O6 | C6H8O6 = C6H6O6 + 2H+ + 2e− | 0.077 |
C6H8O72− | C6H8O72− = CH3COCH3 + 3CO2 + 2H+ +2e− | 1.100 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, L.; Ouyang, Y.; Song, J.; Xu, Z.; Liu, W.; Hu, J.; Wang, Y.; Yuan, F. Synthesis of Metallic Nanocrystals: From Noble Metals to Base Metals. Materials 2019, 12, 1497. https://doi.org/10.3390/ma12091497
Bai L, Ouyang Y, Song J, Xu Z, Liu W, Hu J, Wang Y, Yuan F. Synthesis of Metallic Nanocrystals: From Noble Metals to Base Metals. Materials. 2019; 12(9):1497. https://doi.org/10.3390/ma12091497
Chicago/Turabian StyleBai, Liuyang, Yuge Ouyang, Jun Song, Zhi Xu, Wenfu Liu, Jingyu Hu, Yinling Wang, and Fangli Yuan. 2019. "Synthesis of Metallic Nanocrystals: From Noble Metals to Base Metals" Materials 12, no. 9: 1497. https://doi.org/10.3390/ma12091497
APA StyleBai, L., Ouyang, Y., Song, J., Xu, Z., Liu, W., Hu, J., Wang, Y., & Yuan, F. (2019). Synthesis of Metallic Nanocrystals: From Noble Metals to Base Metals. Materials, 12(9), 1497. https://doi.org/10.3390/ma12091497