Dynamic Mechanical Behavior of Fiber-Reinforced Seawater Coral Mortars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Mortar Preparation
2.3. Test Methods
2.3.1. Fluidity Test
2.3.2. Flexural and Compressive Strengths Testing
2.3.3. Dynamic Mechanical Analysis
2.3.4. Nanoindentation Mechanical Analysis
3. Results and Discussion
3.1. Flow Table
3.2. Compressive and Flexural Strengths
3.3. Dynamic Mechanical Behavior
3.3.1. Influence of Aggregates
3.3.2. Influence of PVA Fibers
3.4. Influence of DMA Temperature Changes on Loss Factor of Mortar
3.5. Mechanical Properties of Interfacial Transition Zone
3.6. Effect of Microstructure on the Dynamic Mechanical Behavior of Seawater Coral Mortar
3.7. Mechanisms on Dynamic Mechanical Properties
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sully, S.; Burkepile, D.E.; Donovan, M.K.; Hodgson, G.; van Woesik, R. A global analysis of coral bleaching over the past two decades. Nat. Commun. 2019, 10, 1264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Feng, P.; Hao, T.; Yue, Q. Axial compressive behavior of seawater coral aggregate concrete-filled FRP tubes. Constr. Build. Mater. 2017, 147, 272–285. [Google Scholar] [CrossRef]
- Da, B.; Yu, H.; Ma, H.; Tan, Y.; Mi, R.; Dou, X. Chloride diffusion study of coral concrete in a marine environment. Constr. Build. Mater. 2016, 123, 47–58. [Google Scholar] [CrossRef]
- Chen, Y.Z.; Ma, Z.Q.; Sun, T. Effect of mineral admixtures on coral sand concrete. World Build. Mater. 2016, 37, 11–14. [Google Scholar]
- Rick, A.E. Coral concrete at bikini atoll. Concr. Int. 1991, 13, 19–24. [Google Scholar]
- Lyu, B.; Wang, A.; Zhang, Z.; Liu, K.; Xu, H.; Shi, L.; Sun, D. Coral aggregate concrete: Numerical description of physical, chemical and morphological properties of coral aggregate. Cem. Concr. Comp. 2019, 100, 25–34. [Google Scholar] [CrossRef]
- Dong, G.; Chunyi, S.; Ziqiang, P.; Qiu, L.; Wei, C. Mechanical properties and microstructure of concrete prepared with coral reef sand and sea water. J. Build. Mater. 2018, 21, 41–46. (In Chinese) [Google Scholar]
- Cheng, S.; Shui, Z.; Sun, T.; Yu, R.; Zhang, G.; Ding, S. Effects of fly ash, blast furnace slag and metakaolin on mechanical properties and durability of coral sand concrete. Appl. Clay. Sci. 2017, 141, 111–117. [Google Scholar] [CrossRef]
- Ming, X.; Jia-Bing, H.; Zhao, J.Y. Research on Preparation Technology of the Coral Sand in accropode Concrete. World Build. Mater. 2016, 37, 14–16. (In Chinese) [Google Scholar]
- Liu, J.; Ou, Z.; Mo, J.; Chen, Y.; Guo, T.; Deng, W. Effectiveness of Saturated Coral Aggregate and Shrinkage Reducing Admixture on the Autogenous Shrinkage of Ultrahigh Performance Concrete. Adv. Mater. Sci. Eng. 2017, 2017, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Cheng, S.; Shui, Z.; Sun, T.; Yu, R.; Zhang, G. Durability and microstructure of coral sand concrete incorporating supplementary cementitious materials. Constr. Build. Mater. 2018, 171, 44–53. [Google Scholar] [CrossRef]
- Yu, H.; Da, B.; Ma, H.; Zhu, H.; Yu, Q.; Ye, H.; Jing, X. Durability of concrete structures in tropical atoll environment. Ocean. Eng. 2017, 135, 1–10. [Google Scholar] [CrossRef]
- Zhao, Y.L.; Han, C.; Zhang, S.Z.; Ruo-Dong, G. Experimental study on the compression age strenth of seawater coral concrete. Concrete 2011, 2, 43–45. [Google Scholar]
- Guo, A.; Li, H.; Ba, X.; Guan, X.; Li, H. Experimental investigation on the cyclic performance of reinforced concrete piers with chloride-induced corrosion in marine environment. Eng. Struct. 2015, 105, 1–11. [Google Scholar] [CrossRef]
- Long, W.J.; Li, H.D.; Wei, J.J.; Xing, F.; Han, N. Sustainable use of recycled crumb rubbers in eco-friendly alkali activated slag mortar: Dynamic mechanical properties. J. Clean Prod. 2018, 204, 1004–1015. [Google Scholar] [CrossRef]
- Long, W.-J.; Wei, J.-J.; Xing, F.; Khayat, K.H. Enhanced dynamic mechanical properties of cement paste modified with graphene oxide nanosheets and its reinforcing mechanism. Cem. Concr. Comp. 2018, 93, 127–139. [Google Scholar] [CrossRef]
- Long, W.-J.; Wei, J.-J.; Gu, Y.-C.; Xing, F. Research on dynamic mechanical properties of alkali activated slag concrete under temperature-loads coupling effects. Constr. Build. Mater. 2017, 154, 687–696. [Google Scholar] [CrossRef]
- Soe, K.T.; Zhang, Y.X.; Zhang, L.C. Material properties of a new hybrid fibre-reinforced engineered cementitious composite. Constr. Build. Mater. 2013, 43, 399–407. [Google Scholar] [CrossRef]
- Yoo, D.Y.; Banthia, N. Mechanical and structural behavior of ultra-high-performance fiber-reinforced concrete subjected to impact and blast. Constr. Build. Mater. 2017, 149, 416–431. [Google Scholar] [CrossRef]
- Zhao, M.; Zhao, M.; Chen, M.; Li, J.; Law, D. An experimental study on strength and toughness of steel fiber reinforced expanded-shale lightweight concrete. Constr. Build. Mater. 2018, 183, 493–501. [Google Scholar] [CrossRef]
- Thong, C.C.; Teo, D.C.L.; Ng, C.K. Application of polyvinyl alcohol (PVA) in cement-based composite materials: A review of its engineering properties and microstructure behavior. Constr. Build. Mater. 2016, 107, 172–180. [Google Scholar] [CrossRef]
- GB/T 175-2007 Common Portland Cement. In Chinese National Standard; Standards Press of China: Beijing, China, 2007.
- GB/T 1596-2017 Fly ash used for cement and concrete. In Chinese National Standard; China Building Materials Federation: Beijing, China, 2017.
- GB/T 14684-2011 Sand Standard for Construction. In Chinese national Standard; Building Materials Industry Technology Supervision and Research Center of the People’s Republic of China: Beijing, China, 2011.
- JG/T223-2007 Polycarboxylates High Performance Water Reducing Admixture. In Chinese National Standard; Ministry of Construction of People’s Republic of China: Beijing, China, 2007.
- GB/T 2419-2005 Test Method for Fluidity of Cement Mortar. In Chinese National Standard; Building Materials Academy of the People’s Republic of China: Beijing, China, 2005.
- GB/T 17671-1999 Method of Testing Cement-determination of Strength. In Chinese National Standard; Building Materials Industry Technology Supervision and Research Center of the People’s Republic of China: Beijing, China, 1999.
- Long, W.-J.; Gu, Y.-C.; Xiao, B.-X.; Zhang, Q.-M.; Xing, F. Micro-mechanical properties and multi-scaled pore structure of graphene oxide cement paste: Synergistic application of nanoindentation, X-ray computed tomography, and SEM-EDS analysis. Constr. Build. Mater. 2018, 179, 661–674. [Google Scholar] [CrossRef]
- Ralegaonkar, R.; Gavali, H.; Aswath, P.; Abolmaali, S. Application of chopped basalt fibers in reinforced mortar: A review. Constr. Build. Mater. 2018, 164, 589–602. [Google Scholar] [CrossRef]
- Ling, Y.; Zhang, P.; Wang, J.; Chen, Y. Effect of PVA fiber on mechanical properties of cementitious composite with and without nano-SiO2. Constr. Build. Mater. 2019, 229, 117068. [Google Scholar] [CrossRef]
- Kaszynska, M.; Zielinski, A. Effect of Lightweight Aggregate on Minimizing Autogenous Shrinkage in Self-consolidating Concrete. Procedia Eng. 2015, 108, 608–615. [Google Scholar] [CrossRef] [Green Version]
- Afzal, S.; Shahzada, K.; Fahad, M.; Saeed, S.; Ashraf, M. Assessment of early-age autogenous shrinkage strains in concrete using bentonite clay as internal curing technique. Constr. Build. Mater. 2014, 66, 403–409. [Google Scholar] [CrossRef]
- Wang, X.; Shui, Z.; Yu, R.; Bao, M.; Wang, G. Effect of coral filler on the hydration and properties of calcium sulfoaluminate cement based materials. Constr. Build. Mater. 2017, 150, 459–466. [Google Scholar] [CrossRef]
- Li, V.C. A simplified micromechanical model of compressive strength of fiber-reinforced cementitious composites. Cem. Concr. Comp. 1992, 14, 131–141. [Google Scholar] [CrossRef] [Green Version]
- Said, S.H.; Razak, H.A. Structural behavior of RC engineered cementitious composite (ECC) exterior beam–column joints under reversed cyclic loading. Constr. Build. Mater. 2016, 107, 226–234. [Google Scholar] [CrossRef]
- Gesoglu, M.; Güneyisi, E.; Muhyaddin, G.F.; Asaad, D.S. Strain hardening ultra-high performance fiber reinforced cementitious composites: Effect of fiber type and concentration. Compos. Part. B-Eng. 2016, 103, 74–83. [Google Scholar] [CrossRef]
- Pakravan, H.R.; Ozbakkaloglu, T. Synthetic fibers for cementitious composites: A critical and in-depth review of recent advances. Constr. Build. Mater. 2019, 207, 491–518. [Google Scholar] [CrossRef]
- Liu, T.; Song, W.; Zou, D.; Li, L. Dynamic mechanical analysis of cement mortar prepared with recycled cathode ray tube (CRT) glass as fine aggregate. J. Clean. Prod. 2018, 174, 1436–1443. [Google Scholar] [CrossRef]
- Sidorova, A.; Vazquez-Ramonich, E.; Barra-Bizinotto, M.; Roa-Rovira, J.J.; Jimenez-Pique, E. Study of the recycled aggregates nature’s influence on the aggregate–cement paste interface and ITZ. Constr. Build. Mater. 2014, 68, 677–684. [Google Scholar] [CrossRef]
- Chi, L.; Lu, S.; Yao, Y. Damping additives used in cement-matrix composites: A review. Compos. Part. B-Eng. 2019, 164, 26–36. [Google Scholar] [CrossRef]
- Shah, S.Z.H.; Karuppanan, S.; Megat-Yusoff, P.S.M.; Sajid, Z. Impact resistance and damage tolerance of fiber reinforced composites: A review. Compos. Struct. 2019, 217, 100–121. [Google Scholar] [CrossRef]
- Xin, C.L.; Wang, Z.Z.; Zhou, J.M.; Gao, B. Shaking table tests on seismic behavior of polypropylene fiber reinforced concrete tunnel lining. Tunn. Undergr. Space Tech. 2019, 88, 1–15. [Google Scholar] [CrossRef]
Ingredient | CaO | SiO2 | Al2O3 | Fe2O3 | MgO | SO3 | K2O | Na2O | LOI |
---|---|---|---|---|---|---|---|---|---|
Cement | 64.42 | 20.52 | 5.62 | 3.88 | 2.11 | 2.10 | 0.28 | 0.20 | 0.87 |
Fly ash | 7.08 | 43.34 | 25.84 | 5.46 | 1.17 | 2.37 | 1.05 | 1.13 | 3.79 |
Ion | K+ | Na+ | Ca+ | Mg+ | Cl− | SO42− |
---|---|---|---|---|---|---|
Concentration, g/L | 0.56 | 16.00 | 0.50 | 2.70 | 26.00 | 4.70 |
Material Characteristics | Coral Sand | Natural River Sand |
---|---|---|
Bulk density (kg/m3) | 1280 | 1490 |
Apparent density (kg/m3) | 2740 | 2630 |
Water absorption (%) | 3.4 | 0.55 |
Density (g/cm3) | Tensile Strength (MPa) | Elastic Modulus (GPa) | Limited Elongation (%) | Length (mm) | Diameter (μm) |
---|---|---|---|---|---|
1.3 | 1620 | 42.8 | 7.8 | 12 | 40 |
Sample | Cement (g) | Fly Ash (g) | Water (g) | W/C | Sand (g) | Fiber (volume%) | HRWR (g) | |
---|---|---|---|---|---|---|---|---|
Standard Sand | Coral Sand | |||||||
SCM-1 | 727 | 182 | 364 | 0.4 | 1000 | 0 | 0 | 1.6 |
SCM-2 | 727 | 182 | 364 | 0.4 | 700 | 300 | 0 | 1.6 |
SCM-3 | 727 | 182 | 364 | 0.4 | 400 | 600 | 0 | 1.6 |
SCM-4 | 727 | 182 | 364 | 0.4 | 0 | 1000 | 0 | 1.6 |
SCM-5 | 727 | 182 | 364 | 0.4 | 0 | 1000 | 0.25 | 1.6 |
SCM-6 | 727 | 182 | 364 | 0.4 | 0 | 1000 | 0.5 | 1.6 |
SCM-7 | 727 | 182 | 364 | 0.4 | 0 | 1000 | 1 | 1.6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, W.-J.; Tang, J.; Li, H.-D.; Wang, Y.; Luo, Q.-L. Dynamic Mechanical Behavior of Fiber-Reinforced Seawater Coral Mortars. Materials 2020, 13, 118. https://doi.org/10.3390/ma13010118
Long W-J, Tang J, Li H-D, Wang Y, Luo Q-L. Dynamic Mechanical Behavior of Fiber-Reinforced Seawater Coral Mortars. Materials. 2020; 13(1):118. https://doi.org/10.3390/ma13010118
Chicago/Turabian StyleLong, Wu-Jian, Jiangsong Tang, Hao-Dao Li, Yaocheng Wang, and Qi-Ling Luo. 2020. "Dynamic Mechanical Behavior of Fiber-Reinforced Seawater Coral Mortars" Materials 13, no. 1: 118. https://doi.org/10.3390/ma13010118
APA StyleLong, W. -J., Tang, J., Li, H. -D., Wang, Y., & Luo, Q. -L. (2020). Dynamic Mechanical Behavior of Fiber-Reinforced Seawater Coral Mortars. Materials, 13(1), 118. https://doi.org/10.3390/ma13010118